2022年8月

从底层硬件角度出发剖析了一下CPU对代码的识别和读取,内容之精彩,读完感觉学到的很多东西瞬间联系起来了,分享给大家。

    先说一下半导体,啥叫半导体?就是介于导体和绝缘体中间的一种东西,比如二极管。相关文章:关于二极管的基础知识

图片

    电流可以从A端流向C端,但反过来则不行。你可以把它理解成一种防止电流逆流的东西。

当C端10V,A端0V,二极管可以视为断开。

    当C端0V,A端10V,二极管可以视为导线,结果就是A端的电流源源不断的流向C端,导致最后的结果就是A端=C端=10V。

    等等,不是说好的C端0V,A端10V么?咋就变成结果是A端=C端=10V了?你可以把这个理解成初始状态,当最后稳定下来之后就会变成A端=C端=10V。

    文科的童鞋们对不住了,实在不懂问高中物理老师吧。反正你不能理解的话就记住这种情况下它相当于导线就行了。

    利用半导体的这个特性,我们可以制作一些有趣的电路,比如【与门】。

图片

    此时A端B端只要有一个是0V,那Y端就会和0V地方直接导通,导致Y端也变成0V。只有AB两端都是10V,Y和AB之间才没有电流流动,Y端也才是10V。

    我们把这个装置成为【与门】,把有电压的地方计为1,0电压的地方计为0。至于具体几V电压,那不重要。也就是AB必须同时输入1,输出端Y才是1;AB有一个是0,输出端Y就是0。

    其他还有【或门】【非门】和【异或门】,跟这个都差不多,或门就是输入有一个是1输出就是1,输入00则输入0。

    非门也好理解,就是输入1输出0,输入0输出1。

    异或门难理解一些,不过也就那么回事,输入01或者10则输出1,输入00或者11则输出0。(即输入两个一样的值则输出0,输入两个不一样的值则输出1)。

    这几种门都可以用二极管或者三极管做出来,具体怎么做就不演示了,有兴趣的童鞋可以自己试试。当然实际并不是用二极管三极管做的,因为它们太费电了。实际是用场效应管(也叫MOS管)做的。

图片

    然后我们就可以用门电路来做CPU了。当然做CPU还是挺难的,我们先从简单的开始:加法器。相关文章:CPU如何进行数字加法加法器顾名思义,就是一种用来算加法的电路,最简单的就是下面这种。

图片

    AB只能输入0或者1,也就是这个加法器能算0+0,1+0或者1+1。

    输出端S是结果,而C则代表是不是发生进位了,二进制1+1=10嘛。这个时候C=1,S=0。

    费了大半天的力气,算个1+1是不是特别有成就感?

    那再进一步算个1+2吧(二进制01+10),然后我们就发现了一个新的问题:第二位需要处理第一位有可能进位的问题,所以我们还得设计一个全加法器。

图片

    每次都这么画实在太麻烦了,我们简化一下。

图片



    也就是有3个输入2个输出,分别输入要相加的两个数和上一位的进位,然后输入结果和是否进位。然后我们把这个全加法器串起来:

图片

    我们就有了一个4位加法器,可以计算4位数的加法也就是15+15,已经达到了幼儿园中班水平,是不是特别给力?

    做完加法器我们再做个乘法器吧,当然乘任意10进制数是有点麻烦的,我们先做个乘2的吧。

    乘2就很简单了,对于一个2进制数数我们在后面加个0就算是乘2了。比如:

5=101(2)

10=1010(2)

    以我们只要把输入都往前移动一位,再在最低位上补个零就算是乘2了。具体逻辑电路图我就不画,你们知道咋回事就行了。

    那乘3呢?简单,先位移一次(乘2)再加一次。乘5呢?先位移两次(乘4)再加一次。

    所以一般简单的CPU是没有乘法的,而乘法则是通过位移和加算的组合来通过软件来实现的。这说的有点远了,我们还是继续做CPU吧。

    现在假设你有8位加法器了,也有一个位移1位的模块了。串起来你就能算(A+B)×2了!激动人心,已经差不多到了准小学生水平。

    那我要是想算A×2+B呢?简单,你把加法器模块和位移模块的接线改一下就行了,改成输入A先过位移模块,再进加法器就可以了。

    你的意思是我改个程序还得重新接线?

    所以你以为呢?

    实际上,编程就是把线来回插啊。惊喜不惊喜?意外不意外?

图片

    早期的计算机就是这样编程的,几分钟就算完了但插线好几天。关于插线编程的相关文章推荐看着篇:国内大神手工焊接,制作了一个CPU。而且插线是个细致且需要耐心的工作,所以那个时候的程序员都是清一色的漂亮女孩子,穿制服的那种,就像照片上这样。是不是有种生不逢时的感觉?

    插线也是个累死人的工作。所以我们需要改进一下,让CPU可以根据指令来相加或者乘2。这里再引入两个模块,一个叫flip-flop,简称FF,中文好像叫触发器,如下图这样。

图片

    这个模块的作用是存储1bit数据。比如上面这个RS型的FF,R是Reset,输入1则清零。S是Set,输入1则保存1。RS都输入0的时候,会一直输出刚才保存的内容。

    我们用FF来保存计算的中间数据(也可以是中间状态或者别的什么),1bit肯定是不够的,不过我们可以并联嘛,用4个或者8个来保存4位或者8位数据。这种我们称之为寄存器(Register)。另外一个叫MUX,中文叫选择器,如下图就是一个选择器。

图片

    这个就简单了,sel输入0则输出i0的数据,i0是什么就输出什么,01皆可。同理sel如果输入1则输出i1的数据。当然选择器可以做的很长,比如这种四进一出的具体原理不细说了,其实看看逻辑图琢磨一下就懂了,知道有这个东西就行了。下图是一个四进一出-选择器。

图片

    有这个东西我们就可以给加法器和乘2模块(位移)设计一个激活针脚。

    这个激活针脚输入1则激活这个模块,输入0则不激活。这样我们就可以控制数据是流入加法器还是位移模块了。

    于是我们给CPU先设计8个输入针脚,4位指令,4位数据。

    我们再设计3个指令:

  • 0100,数据读入寄存器

  • 0001,数据与寄存器相加,结果保存到寄存器

  • 0010,寄存器数据向左位移一位(乘2)

    为什么这么设计呢,刚才也说了,我们可以为每个模块设计一个激活针脚。然后我们可以分别用指令输入的第二第三第四个针脚连接寄存器,加法器和位移器的激活针脚。

    这样我们输入0100这个指令的时候,寄存器输入被激活,其他模块都是0没有激活,数据就存入寄存器了。同理,如果我们输入0001这个指令,则加法器开始工作,我们就可以执行相加这个操作了。

    这里就可以简单回答这个问题的第一个小问题了:CPU是为什么能看懂这些二级制的数呢?

    为什么CPU能看懂,因为CPU里面的线就是这么接的呗。你输入一个二进制数,就像开关一样激活CPU里面若干个指定的模块以及改变这些模块的连同方式,最终得出结果。

    几个可能会被问的问题

Q:CPU里面可能有成千上万个小模块,一个32位/64位的指令能控制那么多吗?

A:我们举例子的CPU里面只有3个模块,就直接接了。真正的CPU里会有一个解码器(decoder),把指令翻译成需要的形式。

Q:你举例子的简单CPU,如果我输入指令0011会怎么样?

A:当然是同时激活了加法器和位移器从而产生不可预料的后果,简单的说因为你使用了没有设计的指令,所以后果自负呗。在真正的CPU上这么干大概率就是崩溃呗,不过肯定会有各种保护性的设计。

    细心的小伙伴可能发现一个问题:你设计的指令【0001,数据与寄存器相加,结果保存到寄存器】这个一步做不出来吧?

    毕竟还有一个回写的过程,实际上确实是这样。我们设计的简易CPU执行一个指令差不多得三步,读取指令,执行指令,写寄存器。

    经典的RISC设计则是分5步:读取指令(IF),解码指令(ID),执行指令(EX),内存操作(MEM),写寄存器(WB)。我们平常用的x86的CPU有的指令可能要分将近20个步骤。

    你可以理解有这么一个开关,我们啪的按一下,CPU就走一步,你按的越快CPU就走的越快。咦?听说你有个想法?少年,你这个想法很危险啊,姑且不说你能不能按那么快。拿现代的CPU来说,也就2GHz多吧,大概一秒也就按个20亿下吧。

    就算你能按那么快,虽然速度是上去了,但功耗会大大增加,发热上升稳定性下降。江湖上确实有这种玩法,名曰超频,不过新手不推荐你尝试哈。

    那CPU怎么知道自己走到哪一步了呢?前面不是介绍了FF么,这个不光可以用来存中间数据,也可以用来存中间状态,也就是走到哪了。

    具体的设计涉及到FSM(finite-state machine),也就是有限状态机理论,以及怎么用FF实装。这个也是很重要的一块,考试必考哈,只不过跟题目关系不大,这里就不展开讲了。

    我们再继续刚才的讲,现在我们有3个指令了。我们来试试算个(1+4)X2+3吧。

0100 0001 ;寄存器存入1

0001 0100 ;寄存器的数字加4

0010 0000 ;乘2

0001 0011 ;再加三

    太棒了,靠这台计算机我们应该可以打败所有的幼儿园小朋友,称霸大班了。而且现在我们用的是4位的,如果换成8位的CPU完全可以吊打低年级小学生了!

    实际上用程序控制CPU是个挺高级的想法,再此之前计算机(器)的CPU都是单独设计的。

    1969年一家日本公司BUSICOM想搞程控的计算器,而负责设计CPU的美国公司也觉得每次都重新设计CPU是个挺傻X的事,于是双方一拍即合,于1970年推出一种划时代的产品,世界上第一款微处理器4004。

    这个架构改变了世界,那家负责设计CPU的美国公司也一步一步成为了业界巨头。哦对了,它叫Intel,对,就是噔噔噔噔的那个。

    我们把刚才的程序整理一下:

"01000001000101000010000000010011"

    你来把它输入CPU,我去准备一下去幼儿园大班踢馆的工作。

    什么!?等我们输完了人家小朋友掰手指都能算出来了?

    没办法机器语言就是这么反人类。哦,忘记说了,这种只有01组成的语言被称之为机器语言(机器码),是CPU唯一可以理解的语言。不过你把机器语言让人读,绝对一秒变典韦,这谁也受不了。

    所以我们还是改进一下吧。不过话虽这么讲,也就往前个30年,直接输入01也是个挺普遍的事情。

    于是我们把我们机器语言写成的程序:

0100 0001 ;寄存器存入1

0001 0100 ;寄存器的数字加4

0010 0000 ;乘2

0001 0011 ;再加三

改写成:

MOV  1 ;寄存器存入1

ADD   4 ;寄存器的数字加4

SHL    0 ;乘2(介于我们设计的乘法器暂时只能乘2,这个0是占位的)

ADD   3 ;再加三

    是不是容易读多了?这就叫汇编语言。

    汇编语言的好处在于它和机器语言一一对应。

    也就是我们写的汇编可以完美的改写成机器语言,直接指挥cpu,进行底层开发;我们也可以把内存中的数据dump出来,以汇编语言的形式展示出来,方便调试和debug。

    汇编语言极大的增强了机器语言的可读性和开发效率,但对于人类来说也依然是太晦涩了,于是我们又发明了高级语言,以近似于人类的语法来表现数据结构和算法。

    比如很多语言都可以这么写:

a=(1+4)*2+3;

    当然这样计算机是不认识的,我们要把它翻译成计算机认识的形式,这个过程叫编译,用来做这个事的东西叫编译器。

    具体怎么把高级语言弄成汇编语言/机器语言的,一本书都写不完,我们就举个简单的例子。

    我们把:

(1+4)*2+3

    转换成:

1,4,+,2,*,3,+

    这种写法叫后缀表示法,也成为逆波兰表示法。相对的,我们平常用的表示法叫中缀表示法,也就是符号方中间,比如1+4。而后缀表示法则写成1,4,+。

    转换成这种写法的好处是没有先乘除后加减的影响,也没有括号了,直接算就行了。

    具体怎么转换的可以找本讲编译原理的书看看,这里不展开讲了。

    转换成这种形式之后我们就可以把它改成成汇编语言了。

    从头开始处理,最开始是1,一个数字,那就存入寄存器:

MOV  1

    之后是4,+,那就加一下:

ADD  4

    然后是2,*,那就乘一下(介于我们设计的乘法器暂时只能乘2,这个0是占位的):

SHL  0

    最后是3,+,那再加一下:

ADD  3

    最后我们把翻译好的汇编整理一下:

MOV  1

ADD  4

SHL  0

ADD  3

    再简单的转换成机器语言,就可以拿到我们设计的简单CPU上运行了。

    其实到了这一步,应该把这个问题都讲清楚了:C语言写出来的东西是怎么翻译成二进制的,电脑又是怎么运行这个二进制的。

    只不过题主最后还提到栈和硬件的关系,这里就再多说几句。

    其实栈是一种数据结构,跟CPU无关。只不过栈这个数据结构实在太常用了,以至于CPU会针对性的进行优化。为了能让我们的CPU也能用栈,我们给它增加几个组件。

    第一,增加一组寄存器。现在有两组寄存器了,我们分别成为A和B。

    第二,增加两个指令,RDA/RDB和WRA/WRB,分别为把指定内存地址的数据读到寄存器A/B,和把寄存器A/B的内容写到指定地址。

    顺便再说下内存,内存有个地址总线,有个数据总线。比如你要把1100这个数字存到0011这个地址,就把1100接到数据总线,0011接到地址总线,都准备好了啪嚓一按开关(对,就是我们前面提到的那个开关),就算是存进去了。

    什么叫DDR内存呢,就是你按这个开关的时候存进去一个数字,抬起来之前你把地址和数据都更新一下,然后一松手,啪!又进去一个。也就是正常的内存你按一下进去1个数据,现在你按一下进去俩数据,这就叫双倍速率(Double Data Rate,简称DDR)

    加了这几个命令之后我们发现按原来的设计,CPU每个指令针脚控制一个模块的方式的话针脚不够用了。所以我们就需要加一个解码器了(decoder)。

    于是我们选择用第二个位作为是否选择寄存器的针脚。如果为0,则第三第四位可以正常激活位移器和加法器;如果为1则只激活寄存器而不激活位移和加法器,然后用第四位来决定是寄存器A还是B。这样变成了:

  • 0100,数据读入寄存器A

  • 0101,数据读入寄存器B (我们把汇编指令定义为MOVB)

  • 0001,数据与寄存器A相加,结果保存到寄存器A

  • 0011,数据与寄存器B相加,结果保存到寄存器B(我们把汇编指令定义为ADDB)

  • 0010,寄存器A数据向左位移一位(乘2)

    最后我们可以用第一位来控制是不是进行内存操作。如果第一位为1则也不激活位移和加法器模块,然后用第三个针脚来控制是读还是写。这样就有了:

  • 1100,把寄存器B的地址数据读入寄存器A(我们把汇编指令定义为RD)

  • 1110,寄存器A的数据写到寄存器B指定的地址(我们把汇编指令定义为WR)

我们加了个解码器之后,加法器的激活条件从p4变成了(NOT (p1 OR p2)) AND p4

加法器的输入则由第三个针脚判断,0则为寄存器A,1为寄存器B。这就是简单的指令解码啦。

    当然我们也可以选择不向下兼容,另外设计一套指令。不过放到现实世界恐怕就要出大乱子了,所以你也可以想象我们平常用的x86背了个多大的历史包袱。

    这个时候我们用栈的话,先栈地址初始化:

0101 1000 ; MOVB 16; 把栈底地址定义为1000

    之后入栈的话,比如把数字3,4入栈:

1111 0011 ; WR   03; 把3写到内存,地址为1000

0011 0001 ; ADDB 01; 栈地址+1

1111 0100 ; WR   04; 把3写到内存,地址为1001

0011 0001 ; ADDB 01; 栈地址+1

    这样就把3,4都保存到栈里了。

    出栈的话反过来:

0011 1111 ; ADDB -1; 栈地址-1

1101 0000 ; RD   00; 把内容读入寄存器A,00是占位

0011 1111 ; ADDB -1; 栈地址-1

1101 0000 ; RD   00; 把内容读入寄存器A,00是占位

    这样就依次得到4,3两个值。

    所以,入栈出栈其实就是把数据写道指定的内存位置,CPU其实不知道你是在干啥。相关文章:关于C语言堆栈的经典讲解当然我们也可以让CPU知道。

    接下来我们再改进一下,给CPU再加一个寄存器SP,并定义两个指令:一个PUSH,一个POP。动作分别是把数据写入SP的地址,然后SP=SP+1,POP的话反过来。

    这样有什么好处呢?好处在于PUSH/POP这样的指令消耗特别少,速度特别快。而栈这种数据结构在各种程序里用的又特别频繁,设计成专用的指令则可以很大程度上提升效率。

    当然前提是编译器知道这个指令,并且做了优化,所以同样的程序(c语言写的),编译参数不一样(打开/关闭某些特性),编译出来的东西也就不一样,在不同硬件上的运行的效率也就会不一样。

    比如上古时代的mmx,今天的SSE4.2,AVX-512,给力不给力?特别给力,但你平常用的程序支不支持是另一码事,要支持怎么办?重新编译呗。

    这个时候开源的优势就显示出来了,重新编译很方便。闭源的话你就要指望作者开恩啦。

    对于大多数人来说,电脑就是个黑箱,我们很难理解它到底是怎用工作的。这个问题又很难一句两句解释清楚,因为它是一环扣一环的,每一环都很抽象,每一环都是基础值俩个学分,展开了讲没上限的那种。

    这就导致了即使是系统学过计算机的人也不见得就有一个明确而清晰的思路。想用尽量短的篇幅和尽量简单的语言把这个事从头到位解释了一下,希望能给大家解答一些疑惑。关于软硬件结合,另外也推荐下这篇文章:代码是如何控制硬件的?


前言

C 语言是一门抽象的面向过程的语言,C 语言广泛应用于底层开发,C 语言在计算机体系中占据着不可替代的作用,可以说 C 语言是编程的基础,也就是说,不管你学习任何语言,都应该把 C 语言放在首先要学的位置上。下面这张图更好的说明 C 语言的重要性

图片

可以看到,C 语言是一种底层语言,是一种系统层级的语言,操作系统就是使用 C 语言来编写的,比如 Windows、Linux、UNIX 。如果说其他语言是光鲜亮丽的外表,那么 C 语言就是灵魂,永远那么朴实无华。

C 语言特性

那么,既然 C 语言这么重要,它有什么值得我们去学的地方呢?我们不应该只因为它重要而去学,我们更在意的是学完我们能学会什么,能让我们获得什么。

C 语言的设计

C 语言是 1972 年,由贝尔实验室的丹尼斯·里奇(Dennis Ritch)肯·汤普逊(Ken Thompson)在开发 UNIX 操作系统时设计了C语言。C 语言是一门流行的语言,它把计算机科学理论和工程实践理论完美的融合在一起,使用户能够完成模块化的编程和设计。

计算机科学理论:简称 CS、是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。

C 语言具有高效性

C 语言是一门高效性语言,它被设计用来充分发挥计算机的优势,因此 C 语言程序运行速度很快,C 语言能够合理了使用内存来获得最大的运行速度

C 语言具有可移植性

C 语言是一门具有可移植性的语言,这就意味着,对于在一台计算机上编写的 C 语言程序可以在另一台计算机上轻松地运行,从而极大的减少了程序移植的工作量。

C 语言特点

  • C 语言是一门简洁的语言,因为 C 语言设计更加靠近底层,因此不需要众多 Java 、C# 等高级语言才有的特性,程序的编写要求不是很严格。
  • C 语言具有结构化控制语句,C 语言是一门结构化的语言,它提供的控制语句具有结构化特征,如 for 循环、if⋯ else 判断语句和 switch 语句等。
  • C 语言具有丰富的数据类型,不仅包含有传统的字符型、整型、浮点型、数组类型等数据类型,还具有其他编程语言所不具备的数据类型,比如指针。
  • C 语言能够直接对内存地址进行读写,因此可以实现汇编语言的主要功能,并可直接操作硬件。
  • C 语言速度快,生成的目标代码执行效率高。

下面让我们通过一个简单的示例来说明一下 C 语言

入门级 C 语言程序

下面我们来看一个很简单的 C 语言程序,我觉得工具无所谓大家用着顺手就行。

第一个 C 语言程序

#include <stdio.h>

int main(int argc, const char * argv[]) {
    printf("Hello, World!\n");
  
   printf("my Name is cxuan \n")
    
    printf("number = %d \n", number);
    
    return 0;
}

你可能不知道这段代码是什么意思,不过别着急,我们先运行一下看看结果。

这段程序输出了 Hello,World! 和 My Name is cxuan,下面我们解释一下各行代码的含义。

首先,第一行的 #include <stdio.h>, 这行代码包含另一个文件,这一行告诉编译器把 stdio.h 的内容包含在当前程序中。stdio.h 是 C 编译器软件包的标准部分,它能够提供键盘输入和显示器输出。

什么是 C 标准软件包?C 是由 Dennis M 在1972年开发的通用,过程性,命令式计算机编程语言。C标准库是一组 C 语言内置函数,常量和头文件,例如<stdio.h>,<stdlib.h>,<math.h>等。此库将用作 C 程序员的参考手册。

我们后面会介绍 stdio.h ,现在你知道它是什么就好。

在 stdio.h 下面一行代码就是 main 函数。

C 程序能够包含一个或多个函数,函数是 C 语言的根本,就和方法是 Java 的基本构成一样。main() 表示一个函数名,int 表示的是 main 函数返回一个整数。void 表明 main() 不带任何参数。这些我们后面也会详细说明,只需要记住 int 和 void 是标准 ANSI C 定义 main() 的一部分(如果使用 ANSI C 之前的编译器,请忽略 void)。

然后是 /*一个简单的 C 语言程序*/ 表示的是注释,注释使用 /**/ 来表示,注释的内容在两个符号之间。这些符号能够提高程序的可读性。

注意:注释只是为了帮助程序员理解代码的含义,编译器会忽略注释

下面就是 { ,这是左花括号,它表示的是函数体的开始,而最后的右花括号 } 表示函数体的结束。{ } 中间是书写代码的地方,也叫做代码块。

int number 表示的是将会使用一个名为 number 的变量,而且 number 是 int 整数类型。

number = 11 表示的是把值 11 赋值给 number 的变量。

printf(Hello,world!\n); 表示调用一个函数,这个语句使用 printf() 函数,在屏幕上显示 Hello,world , printf() 函数是 C 标准库函数中的一种,它能够把程序运行的结果输出到显示器上。而代码 \n 表示的是 换行,也就是另起一行,把光标移到下一行。

然后接下来的一行 printf() 和上面一行是一样的,我们就不多说了。最后一行 printf() 有点意思,你会发现有一个 %d 的语法,它的意思表示的是使用整形输出字符串。

代码块的最后一行是 return 0,它可以看成是 main 函数的结束,最后一行是代码块 } ,它表示的是程序的结束。

好了,我们现在写完了第一个 C 语言程序,有没有对 C 有了更深的认识呢?肯定没有。。。这才哪到哪,继续学习吧。

现在,我们可以归纳为 C 语言程序的几个组成要素,如下图所示

图片

C 语言执行流程

C 语言程序成为高级语言的原因是它能够读取并理解人们的思想。然而,为了能够在系统中运行 hello.c 程序,则各个 C 语句必须由其他程序转换为一系列低级机器语言指令。这些指令被打包作为可执行对象程序,存储在二进制磁盘文件中。目标程序也称为可执行目标文件。

在 UNIX 系统中,从源文件到对象文件的转换是由编译器执行完成的。

gcc -o hello hello.c

gcc 编译器驱动从源文件读取 hello.c ,并把它翻译成一个可执行文件 hello。这个翻译过程可用如下图来表示

图片

这就是一个完整的 hello world 程序执行过程,会涉及几个核心组件:预处理器、编译器、汇编器、连接器,下面我们逐个击破。

  • 预处理阶段(Preprocessing phase),预处理器会根据开始的 # 字符,修改源 C 程序。#include <stdio.h> 命令就会告诉预处理器去读系统头文件 stdio.h 中的内容,并把它插入到程序作为文本。然后就得到了另外一个 C 程序hello.i,这个程序通常是以 .i为结尾。

  • 然后是 编译阶段(Compilation phase),编译器会把文本文件 hello.i 翻译成文本hello.s,它包括一段汇编语言程序(assembly-language program)

  • 编译完成之后是汇编阶段(Assembly phase),这一步,汇编器 as会把 hello.s 翻译成机器指令,把这些指令打包成可重定位的二进制程序(relocatable object program)放在 hello.c 文件中。它包含的 17 个字节是函数 main 的指令编码,如果我们在文本编辑器中打开 hello.o 将会看到一堆乱码。

  • 最后一个是链接阶段(Linking phase),我们的 hello 程序会调用 printf 函数,它是 C 编译器提供的 C 标准库中的一部分。printf 函数位于一个叫做 printf.o文件中,它是一个单独的预编译好的目标文件,而这个文件必须要和我们的 hello.o 进行链接,连接器(ld) 会处理这个合并操作。结果是,hello 文件,它是一个可执行的目标文件(或称为可执行文件),已准备好加载到内存中并由系统执行。

你需要理解编译系统做了什么

对于上面这种简单的 hello 程序来说,我们可以依赖编译系统(compilation system)来提供一个正确和有效的机器代码。然而,对于我们上面讲的程序员来说,编译器有几大特征你需要知道

  • 优化程序性能(Optimizing program performance),现代编译器是一种高效的用来生成良好代码的工具。对于程序员来说,你无需为了编写高质量的代码而去理解编译器内部做了什么工作。然而,为了编写出高效的 C 语言程序,我们需要了解一些基本的机器码以及编译器将不同的 C 语句转化为机器代码的过程。
  • 理解链接时出现的错误(Understanding link-time errors),在我们的经验中,一些非常复杂的错误大多是由链接阶段引起的,特别是当你想要构建大型软件项目时。
  • 避免安全漏洞(Avoiding security holes),近些年来,缓冲区溢出(buffer overflow vulnerabilities)是造成网络和 Internet 服务的罪魁祸首,所以我们有必要去规避这种问题。

系统硬件组成

为了理解 hello 程序在运行时发生了什么,我们需要首先对系统的硬件有一个认识。下面这是一张 Intel 系统产品的模型,我们来对其进行解释

图片

  • 总线(Buses):在整个系统中运行的是称为总线的电气管道的集合,这些总线在组件之间来回传输字节信息。通常总线被设计成传送定长的字节块,也就是 字(word)。字中的字节数(字长)是一个基本的系统参数,各个系统中都不尽相同。现在大部分的字都是 4 个字节(32 位)或者 8 个字节(64 位)。

图片

  • I/O 设备(I/O Devices):Input/Output 设备是系统和外部世界的连接。上图中有四类 I/O 设备:用于用户输入的键盘和鼠标,用于用户输出的显示器,一个磁盘驱动用来长时间的保存数据和程序。刚开始的时候,可执行程序就保存在磁盘上。

    每个I/O 设备连接 I/O 总线都被称为控制器(controller) 或者是 适配器(Adapter)。控制器和适配器之间的主要区别在于封装方式。控制器是 I/O 设备本身或者系统的主印制板电路(通常称作主板)上的芯片组。而适配器则是一块插在主板插槽上的卡。无论组织形式如何,它们的最终目的都是彼此交换信息。

  • 主存(Main Memory),主存是一个临时存储设备,而不是永久性存储,磁盘是 永久性存储 的设备。主存既保存程序,又保存处理器执行流程所处理的数据。从物理组成上说,主存是由一系列 DRAM(dynamic random access memory) 动态随机存储构成的集合。逻辑上说,内存就是一个线性的字节数组,有它唯一的地址编号,从 0 开始。一般来说,组成程序的每条机器指令都由不同数量的字节构成,C 程序变量相对应的数据项的大小根据类型进行变化。比如,在 Linux 的 x86-64 机器上,short 类型的数据需要 2 个字节,int 和 float 需要 4 个字节,而 long 和 double 需要 8 个字节。

  • 处理器(Processor)CPU(central processing unit)  或者简单的处理器,是解释(并执行)存储在主存储器中的指令的引擎。处理器的核心大小为一个字的存储设备(或寄存器),称为程序计数器(PC)。在任何时刻,PC 都指向主存中的某条机器语言指令(即含有该条指令的地址)。

    从系统通电开始,直到系统断电,处理器一直在不断地执行程序计数器指向的指令,再更新程序计数器,使其指向下一条指令。处理器根据其指令集体系结构定义的指令模型进行操作。在这个模型中,指令按照严格的顺序执行,执行一条指令涉及执行一系列的步骤。处理器从程序计数器指向的内存中读取指令,解释指令中的位,执行该指令指示的一些简单操作,然后更新程序计数器以指向下一条指令。指令与指令之间可能连续,可能不连续(比如 jmp 指令就不会顺序读取)

    下面是 CPU 可能执行简单操作的几个步骤

  • 加载(Load):从主存中拷贝一个字节或者一个字到内存中,覆盖寄存器先前的内容

  • 存储(Store):将寄存器中的字节或字复制到主存储器中的某个位置,从而覆盖该位置的先前内容

  • 操作(Operate):把两个寄存器的内容复制到 ALU(Arithmetic logic unit)。把两个字进行算术运算,并把结果存储在寄存器中,重写寄存器先前的内容。

算术逻辑单元(ALU)是对数字二进制数执行算术和按位运算的组合数字电子电路。

  • 跳转(jump):从指令中抽取一个字,把这个字复制到程序计数器(PC) 中,覆盖原来的值

剖析 hello 程序的执行过程

前面我们简单的介绍了一下计算机的硬件的组成和操作,现在我们正式介绍运行示例程序时发生了什么,我们会从宏观的角度进行描述,不会涉及到所有的技术细节

刚开始时,shell 程序执行它的指令,等待用户键入一个命令。当我们在键盘上输入了 ./hello 这几个字符时,shell 程序将字符逐一读入寄存器,再把它放到内存中,如下图所示

图片

当我们在键盘上敲击回车键的时候,shell 程序就知道我们已经结束了命令的输入。然后 shell 执行一系列指令来加载可执行的 hello 文件,这些指令将目标文件中的代码和数据从磁盘复制到主存。

利用 DMA(Direct Memory Access) 技术可以直接将磁盘中的数据复制到内存中,如下

图片

一旦目标文件中 hello 中的代码和数据被加载到主存,处理器就开始执行 hello 程序的 main 程序中的机器语言指令。这些指令将 hello,world\n 字符串中的字节从主存复制到寄存器文件,再从寄存器中复制到显示设备,最终显示在屏幕上。如下所示

图片

高速缓存是关键

上面我们介绍完了一个 hello 程序的执行过程,系统花费了大量时间把信息从一个地方搬运到另外一个地方。hello 程序的机器指令最初存储在磁盘上。当程序加载后,它们会拷贝到主存中。当 CPU 开始运行时,指令又从内存复制到 CPU 中。同样的,字符串数据 hello,world \n 最初也是在磁盘上,它被复制到内存中,然后再到显示器设备输出。从程序员的角度来看,这种复制大部分是开销,这减慢了程序的工作效率。因此,对于系统设计来说,最主要的一个工作是让程序运行的越来越快。

由于物理定律,较大的存储设备要比较小的存储设备慢。而由于寄存器和内存的处理效率在越来越大,所以针对这种差异,系统设计者采用了更小更快的存储设备,称为高速缓存存储器(cache memory, 简称为 cache 高速缓存),作为暂时的集结区域,存放近期可能会需要的信息。如下图所示

图片

图中我们标出了高速缓存的位置,位于高速缓存中的 L1高速缓存容量可以达到数万字节,访问速度几乎和访问寄存器文件一样快。容量更大的 L2 高速缓存通过一条特殊的总线链接 CPU,虽然 L2 缓存比 L1 缓存慢 5 倍,但是仍比内存要哦快 5 - 10 倍。L1 和 L2 是使用一种静态随机访问存储器(SRAM) 的硬件技术实现的。最新的、处理器更强大的系统甚至有三级缓存:L1、L2 和 L3。系统可以获得一个很大的存储器,同时访问速度也更快,原因是利用了高速缓存的 局部性原理。

Again:入门程序细节

现在,我们来探讨一下入门级程序的细节,由浅入深的来了解一下 C 语言的特性。

#include<stdio.h>

我们上面说到,#include<stdio.h> 是程序编译之前要处理的内容,称为编译预处理命令。

预处理命令是在编译之前进行处理。预处理程序一般以 # 号开头。

所有的 C 编译器软件包都提供 stdio.h 文件。该文件包含了给编译器使用的输入和输出函数,比如 println() 信息。该文件名的含义是标准输入/输出 头文件。通常,在 C 程序顶部的信息集合被称为 头文件(header)

C 的第一个标准是由 ANSI 发布的。虽然这份文档后来被国际标准化组织(ISO)采纳并且 ISO 发布的修订版也被 ANSI 采纳了,但名称 ANSI C(而不是 ISO C) 仍被广泛使用。一些软件开发者使用ISO C,还有一些使用 Standard C

C 标准库

除了 <sdtio.h> 外,C 标准库还包括下面这些头文件

图片

<assert.h>

提供了一个名为 assert 的关键字,它用于验证程序作出的假设,并在假设为假输出诊断消息。

<ctype.h>

C 标准库的 ctype.h 头文件提供了一些函数,可以用于测试和映射字符。

这些字符接受 int 作为参数,它的值必须是 EOF 或者是一个无符号字符

EOF是一个计算机术语,为 End Of File 的缩写,在操作系统中表示资料源无更多的资料可读取。资料源通常称为档案或串流。通常在文本的最后存在此字符表示资料结束。

<errno.h>

C 标准库的 errno.h 头文件定义了整数变量 errno,它是通过系统调用设置的,这些库函数表明了什么发生了错误。

<float.h>

C 标准库的 float.h 头文件包含了一组与浮点值相关的依赖于平台的常量。

<limits.h>

limits.h 头文件决定了各种变量类型的各种属性。定义在该头文件中的宏限制了各种变量类型(比如 char、int 和 long)的值。

<locale.h>

locale.h 头文件定义了特定地域的设置,比如日期格式和货币符号

<math.h>

math.h 头文件定义了各种数学函数和一个宏。在这个库中所有可用的功能都带有一个 double 类型的参数,且都返回 double 类型的结果。

<setjmp.h>

setjmp.h 头文件定义了宏 setjmp()、函数 longjmp() 和变量类型 jmp_buf,该变量类型会绕过正常的函数调用和返回规则。

<signal.h>

signal.h 头文件定义了一个变量类型 sig_atomic_t、两个函数调用和一些宏来处理程序执行期间报告的不同信号。

<stdarg.h>

stdarg.h 头文件定义了一个变量类型 va_list 和三个宏,这三个宏可用于在参数个数未知(即参数个数可变)时获取函数中的参数。

<stddef.h>

stddef .h 头文件定义了各种变量类型和宏。这些定义中的大部分也出现在其它头文件中。

<stdlib.h>

stdlib .h 头文件定义了四个变量类型、一些宏和各种通用工具函数。

<string.h>

string .h 头文件定义了一个变量类型、一个宏和各种操作字符数组的函数。

<time.h>

time.h 头文件定义了四个变量类型、两个宏和各种操作日期和时间的函数。

main() 函数

main 函数听起来像是调皮捣蛋的孩子故意给方法名起一个 主要的 方法,来告诉他人他才是这个世界的中心。但事实却不是这样,而 main() 方法确实是世界的中心。

C 语言程序一定从 main() 函数开始执行,除了 main() 函数外,你可以随意命名其他函数。通常,main 后面的 () 中表示一些传入信息,我们上面的那个例子中没有传递信息,因为圆括号中的输入是 void 。

除了上面那种写法外,还有两种 main 方法的表示方式,一种是 void main(){} ,一种是 int main(int argc, char* argv[]) {}

  • void main() 声明了一个带有不确定参数的构造方法
  • int main(int argc, char* argv[]) {} 其中的 argc 是一个非负值,表示从运行程序的环境传递到程序的参数数量。它是指向 argc + 1 指针数组的第一个元素的指针,其中最后一个为null,而前一个(如果有的话)指向表示从主机环境传递给程序的参数的字符串。如果argv [0]不是空指针(或者等效地,如果argc> 0),则指向表示程序名称的字符串,如果在主机环境中无法使用程序名称,则该字符串为空。

注释

在程序中,使用 /**/ 的表示注释,注释对于程序来说没有什么实际用处,但是对程序员来说却非常有用,它能够帮助我们理解程序,也能够让他人看懂你写的程序,我们在开发工作中,都非常反感不写注释的人,由此可见注释非常重要。

图片

C 语言注释的好处是,它可以放在任意地方,甚至代码在同一行也没关系。较长的注释可以多行表示,我们使用 /**/ 表示多行注释,而 // 只表示的是单行注释。下面是几种注释的表示形式

// 这是一个单行注释

/* 多行注释用一行表示 */

/*
  多行注释用多行表示
    多行注释用多行表示
      多行注释用多行表示
        多行注释用多行表示

*/

函数体

在头文件、main 方法后面的就是函数体(注释一般不算),函数体就是函数的执行体,是你编写大量代码的地方。

变量声明

在我们入门级的代码中,我们声明了一个名为 number 的变量,它的类型是 int,这行代码叫做 声明,声明是 C 语言最重要的特性之一。这个声明完成了两件事情:定义了一个名为 number 的变量,定义 number 的具体类型。

int 是 C 语言的一个 关键字(keyword),表示一种基本的 C 语言数据类型。关键字是用于语言定义的。不能使用关键字作为变量进行定义。

示例中的 number 是一个 标识符(identifier),也就是一个变量、函数或者其他实体的名称。

###变量赋值

在入门例子程序中,我们声明了一个 number 变量,并为其赋值为 11,赋值是 C 语言的基本操作之一。这行代码的意思就是把值 1 赋给变量 number。在执行 int number 时,编译器会在计算机内存中为变量 number 预留空间,然后在执行这行赋值表达式语句时,把值存储在之前预留的位置。可以给 number 赋不同的值,这就是 number 之所以被称为 变量(variable) 的原因。

图片

printf 函数

在入门例子程序中,有三行 printf(),这是  C 语言的标准函数。圆括号中的内容是从 main 函数传递给 printf 函数的。参数分为两种:实际参数(actual argument) 和 形式参数(formal parameters)。我们上面提到的 printf 函数括号中的内容,都是实参。

return 语句

在入门例子程序中,return 语句是最后一条语句。int main(void) 中的 int 表明 main() 函数应返回一个整数。有返回值的 C 函数要有 return 语句,没有返回值的程序也建议大家保留 return 关键字,这是一种好的习惯或者说统一的编码风格。

分号

在 C 语言中,每一行的结尾都要用 ; 进行结束,它表示一个语句的结束,如果忘记或者会略分号会被编译器提示错误。

关键字

下面是 C 语言中的关键字,C 语言的关键字一共有 32 个,根据其作用不同进行划分

数据类型关键字

数据类型的关键字主要有 12 个,分别是

  • char: 声明字符型变量或函数
  • double: 声明双精度变量或函数
  • float: 声明浮点型变量或函数
  • int : 声明整型变量或函数
  • long: 声明长整型变量或函数
  • short : 声明短整型变量或函数
  • signed : 声明有符号类型变量或函数
  • _Bool:  声明布尔类型
  • _Complex :声明复数
  • _Imaginary: 声明虚数
  • unsigned : 声明无符号类型变量或函数
  • void : 声明函数无返回值或无参数,声明无类型指针

控制语句关键字

控制语句循环的关键字也有 12 个,分别是

循环语句

  • for : for 循环,使用的最多
  • do :循环语句的前提条件循环体
  • while:循环语句的循环条件
  • break : 跳出当前循环
  • continue:结束当前循环,开始下一轮循环

条件语句

  • if:条件语句的判断条件
  • else : 条件语句的否定分支,与 if 连用
  • goto: 无条件跳转语句

开关语句

  • switch: 用于开关语句
  • case:开关语句的另外一种分支
  • default : 开关语句中的其他分支

返回语句

retur:子程序返回语句(可以带参数,也看不带参数)

存储类型关键字

  • auto : 声明自动变量 一般不使用
  • extern : 声明变量是在其他文件正声明(也可以看做是引用变量)
  • register : 声明寄存器变量
  • static: 声明静态变量

其他关键字

  • const: 声明只读变量
  • sizeof : 计算数据类型长度
  • typedef: 用以给数据类型取别名
  • volatile : 说明变量在程序执行中可被隐含地改变

C 中的数据

我们在了解完上面的入门例子程序后,下面我们就要全面认识一下 C 语言程序了,首先我们先来认识一下 C 语言最基本的变量与常量。

变量和常量

变量和常量是程序处理的两种基本对象。

有些数据类型在程序使用之前就已经被设定好了,在整个过程中没有变化(这段话描述不准确,但是为了通俗易懂,暂且这么描述),这种数据被称为常量(constant)。另外一种数据类型在程序执行期间可能会发生改变,这种数据类型被称为 变量(variable)。例如 int number 就是一个变量,而3.1415 就是一个常量,因为 int number 一旦声明出来,你可以对其任意赋值,而 3.1415 一旦声明出来,就不会再改变。

变量名

有必要在聊数据类型之前先说一说变量名的概念。变量名是由字母和数字组成的序列,第一个字符必须是字母。在变量名的命名过程中,下划线 _ 被看作字母,下划线一般用于名称较长的变量名,这样能够提高程序的可读性。变量名通常不会以下划线来开头。在 C 中,大小写是有区别的,也就是说,a 和 A 完全是两个不同的变量。一般变量名使用小写字母,符号常量(#define 定义的)全都使用大写。选择变量名的时候,尽量能够从字面上描述出变量的用途,切忌起这种 abc 毫无意义的变量。

还需要注意一般局部变量都会使用较短的变量名,外部变量使用较长的名字。

数据类型

在了解数据类型之前,我们需要先了解一下这些概念 位、字节和字

位、字节和字都是对计算机存储单元的描述。在计算机世界中,最小的单元是 位(bit),一个位就表示一个 0 或 1,一般当你的小伙伴问你的电脑是 xxx 位,常见的有 32 位或者 64 位,这里的位就指的是比特,比特就是 bit 的中文名称,所以这里的 32 位或者 64 位指的就是 32 bit 或者 64 bit。字节是基本的存储单元,基本存储单元说的是在计算机中都是按照字节来存储的,一个字节等于 8 位,即 1 byte = 8 bit。字是自然存储单位,在现代计算机中,一个字等于 2 字节。

C 语言的数据类型有很多,下面我们就来依次介绍一下。

整型

C 语言中的整型用 int 来表示,可以是正整数、负整数或零。在不同位数的计算机中其取值范围也不同。不过在 32 位和 64 位计算机中,int 的取值范围是都是 2^32 ,也就是 -2147483648 ~ +2147483647,无符号类型的取值范围是 0 ~ 4294967295。

整型以二进制整数存储,分为有符号数和无符号数两种形态,有符号数可以存储正整数、负整数和零;无符号只能存储正整数和零。

可以使用 printf 打印出来 int 类型的值,如下代码所示。

#include <stdio.h> 
int main(){
 int a = -5;
 printf("%d\n",a);
 
 unsigned int b = 6;
 printf("%d\n",b);
 
}

C 语言还提供 3 个附属关键字修饰整数类型,即 short、long 和 unsigned

  • short int 类型(或者简写为 short)占用的存储空间可能比 int 类型少,适合用于数值较小的场景。
  • long int 或者 long 占用的存储空间可能比 int 类型多,适合用于数值较大的场景。
  • long long int 或者 long long(C99 加入)占用的存储空间比 long 多,适用于数值更大的场合,至少占用 64 位,与 int 类似,long long 也是有符号类型。
  • unsigned int 或 unsigned 只用于非负值的场景,这种类型的取值范围有所不同,比如 16 位的 unsigned int 表示的范围是 0 ~ 65535 ,而不是 -32768 ~ 32767。
  • 在 C90 标准中,添加了 unsigned long int 或者 unsigned long 和 unsigned short int 或 unsigned short 类型,在 C99 中又添加了 unsigned long long int 或者 unsigned long long 。
  • 在任何有符号类型前面加 signed ,可强调使用有符号类型的意图。比如 short、short int、signed short、signed short int 都表示一种类型。

比如上面这些描述可以用下面这些代码来声明:

long int lia;
long la;
long long lla;
short int sib;
short sb;
unsigned int uic;
unsigned uc;
unsigned long uld;
unsigned short usd;

这里需要注意一点,unsigned 定义的变量,按照 printf 格式化输出时,是能够显示负值的,为什么呢?不是 unsigned 修饰的值不能是负值啊,那是因为 unsigned 修饰的变量,在计算时会有用,输出没什么影响,这也是 cxuan 刚开始学习的时候踩的坑。

我们学过 Java 的同学刚开始都对这些定义觉得莫名其妙,为什么一个 C 语言要对数据类型有这么多定义?C 语言真麻烦,我不学了!

千万不要有这种想法,如果有这种想法的同学,你一定是被 JVM 保护的像个孩子!我必须从现在开始纠正你的这个想法,因为 Java 有 JVM 的保护,很多特性都做了优化,而 C 就像个没有伞的孩子,它必须自己和这个世界打交道!

上面在说 short int 和 long int 的时候,都加了一个可能,怎么,难道 short int 和 long int 和 int 还不一样吗?

这里就是 C 语言数据类型一个独特的风格。

为什么说可能,这是由于 C 语言为了适配不同的机器来设定的语法规则,在早起的计算机上,int 类型和 short 类型都占 16 位,long 类型占 32 位,在后来的计算机中,都采用了 16 位存储 short 类型,32 位存储 int 类型和 long 类型,现在,计算机普遍使用 64 位 CPU,为了存储 64 位整数,才引入了 long long 类型。所以,一般现在个人计算机上常见的设置是 long long 占用 64 位,long 占用 32 位,short 占用 16 位,int 占用 16 位或者 32 位。

char 类型

char 类型一般用于存储字符,表示方法如下

char a = 'x';
char b = 'y';

char 被称为字符类型,只能用单引号 '' 来表示,而不能用双引号 “” 来表示,这和字符串的表示形式相反。

char 虽然表示字符,但是 char 实际上存储的是整数而不是字符,计算机一般使用 ASCII 来处理字符,标准 ASCII 码的范围是 0 - 127 ,只需 7 位二进制数表示即可。C 语言中规定 char 占用 1 字节。

其实整型和字符型是相通的,他们在内存中的存储本质是相通的,编译器发现 char ,就会自动转换为整数存储,相反的,如果给 int 类型赋值英文字符,也会转换成整数存储,如下代码

#include <stdio.h>

int main(){
 char a = 'x';
 int b;
 b = 'y';
 
 printf("%d\n%d\n",a,b);
}

输出

120

121

所以,int 和 char 只是存储的范围不同,整型可以是 2 字节,4 字节,8 字节,而字符型只占 1 字节。

有些 C 编译器把 char 实现为有符号类型,这意味着 char 可表示的范围是 -128 ~ 127,而有些编译器把 char 实现为无符号类型,这种情况下 char 可表示的范围是 0 - 255。signed char 表示的是有符号类型,unsigned char 表示的是无符号类型。

_Bool 类型

_Bool 类型是 C99 新增的数据类型,用于表示布尔值。也就是逻辑值 true 和 false。在 C99 之前,都是用 int 中的 1 和 0 来表示。所以 _Bool 在某种程度上也是一种数据类型。表示 0 和 1 的话,用 1 bit(位)表示就够了。

float、double 和 long double

整型对于大多数软件开发项目而言就已经够用了。然而,在金融领域和数学领域还经常使用浮点数。C 语言中的浮点数有 float、double 和 long double 类型。浮点数类型能够表示包括小数在内更大范围的数。浮点数能表示小数,而且表示范围比较大。浮点数的表示类似于科学技术法。下面是一些科学记数法示例:

数字科学记数法指数记数法
10000000001 * 10^91.0e9
4560004.56 * 10^54.56e5
372.853.7285 * 10 ^ 23.7285e2
0.00252.5 * 10 ^ -32.5e-3

C 规定 float 类型必须至少能表示 6 位有效数字,而且取值范围至少是 10^-37 ~ 10^+37。通常情况下,系统存储一个浮点数要占用 32 位。

C 提供的另一种浮点类型是 double(双精度类型)。一般来说,double 占用的是 64 位而不是 32 位。

C 提供的第三种类型是 long double ,用于满足比 double 类型更高的精度要求。不过,C 只保证了 long double 类型至少与 double 类型相同。

浮点数的声明方式和整型类似,下面是一些浮点数的声明方式。

#include <stdio.h>

int main(){

 float aboat = 2100.0;
 double abet = 2.14e9;
 long double dip = 5.32e-5;
 
 printf("%f\n", aboat);
 printf("%e\n", abet);
 printf("%Lf\n", dip);
 
}

printf() 函数使用 %f 转换说明打印十进制计数法的 float 和 double 类型浮点数,用 %e 打印指数记数法的浮点数。打印 long double 类型要使用 %Lf 转换说明。

关于浮点数,还需要注意其上溢下溢的问题。

上溢指的是是指由于数字过大,超过当前类型所能表示的范围,如下所示

float toobig = 3.4E38 * 100.0f;
printf("%e\n",toobig);

输出的内容是 inf,这表示 toobig 的结果超过了其定义的范围,C 语言就会给 toobig 赋一个表示无穷大的特定值,而且 printf 显示值为 inf 或者 infinity 。

下溢:是指由于数值太小,低于当前类型所能表示的最小的值,计算机就只好把尾数位向右移,空出第一个二进制位,但是与此同时,却损失了原来末尾有效位上面的数字,这种情况就叫做下溢。比如下面这段代码

float toosmall = 0.1234e-38/10;
printf("%e\n", toosmall);

复数和虚数类型

许多科学和工程计算都需要用到复数和虚数,C99 标准支持复数类型和虚数类型,C 语言中有 3 种复数类型:float _Complex、double _Complex 和 long double  _Complex

C 语言提供的 3 种虚数类型:float _Imaginary、 double _Imaginary 和 long double _Imaginary

如果包含 complex.h 头文件的话,便可使用 complex 替换 _Complex,用 imaginary 替代 _Imaginary。

其他类型

除了上述我们介绍过的类型之外,C 语言中还有其他类型,比如数组、指针、结构和联合,虽然 C 语言没有字符串类型,但是 C 语言却能够很好的处理字符串。

常量

在很多情况下我们需要常量,在整个程序的执行过程中,其值不会发生改变,比如一天有 24 个小时,最大缓冲区的大小,滑动窗口的最大值等。这些固定的值,即称为常量,又可以叫做字面量

常量也分为很多种,整型常量,浮点型常量,字符常量,字符串常量,下面我们分别来介绍

整数常量

整数常量可以表示为十进制、八进制或十六进制。前缀指定基数:0x 或 0X 表示十六进制,0 表示八进制,不带前缀则默认表示十进制。整数常量也可以带一个后缀,后缀是 U 和 L 的组合,U 表示无符号整数(unsigned),L 表示长整数(long)。

330         /* 合法的 */
315u        /* 合法的 */
0xFeeL      /* 合法的 */
048         /* 非法的:8 进制不能定义 8 */

浮点型常量

浮点型常量由整数部分、小数点、小数部分和指数部分组成。你可以使用小数形式或者指数形式来表示浮点常量。

当使用小数形式表示时,必须包含整数部分、小数部分,或同时包含两者。当使用指数形式表示时, 必须包含小数点、指数,或同时包含两者。带符号的指数是用 e 或 E 引入的。

3.14159       /* 合法的 */
314159E-5L    /* 合法的 */
510E          /* 非法的:不完整的指数 */
210f          /* 非法的:没有小数或指数 */

字符常量

C 语言中的字符常量使用单引号(即撇号)括起来的一个字符。如‘a’,‘x’,'D',‘?’,‘$’ 等都是字符常量。注意,‘a’ 和 ‘A’ 是不同的字符常量。

除了以上形式的字符常量外,C 还允许用一种特殊形式的字符常量,就是以一个 “\” 开头的字符序列。例如,前面已经遇到过的,在 printf 函数中的‘\n’,它代表一个换行符。这是一种控制字符,在屏幕上是不能显示的。

常用的以 “\” 开头的特殊字符有

图片

表中列出的字符称为“转义字符”,意思是将反斜杠(\)后面的字符转换成另外的意义。如 ‘\n’ 中的 “n” 不代表字母 n 而作为“换行”符。

表中最后第 2 行是用ASCII码(八进制数)表示一个字符,例如 ‘\101’ 代表 ASCII 码(十进制数)为 65 的字符 “A”。‘\012’(十进制 ASCII 码为 10)代表换行。

需要注意的是 ‘\0’ 或 ‘\000’ 代表 ASCII 码为 0 的控制字符,它用在字符串中。

字符串常量

字符串常量通常用 "" 进行表示。字符串就是一系列字符的集合。一个字符串包含类似于字符常量的字符:普通的字符、转义序列和通用的字符。

常量定义

C 语言中,有两种定义常量的方式。

  1. 使用 #define 预处理器进行预处理
  2. 使用 const 关键字进行处理

下面是使用 #define 预处理器进行常量定义的代码。

#include <stdio.h>

#define LENGTH 5
#define WIDTH 10

int main(){
 
 int area = LENGTH * WIDTH;
 
 printf("area = %d\n", area);
 
}

同样的,我们也可以使用 const 关键字来定义常量,如下代码所示

#include <stdio.h>

int main(){
 
 const int LENGTH = 10;
 const int WIDTH = 5;
 
 int area;
 area = LENGTH * WIDTH;
 
 printf("area = %d\n", area);
 
}

那么这两种常量定义方式有什么不同呢?

编译器处理方式不同

使用 #define 预处理器是在预处理阶段进行的,而 const 修饰的常量是在编译阶段进行。

类型定义和检查不同

使用 #define 不用声明数据类型,而且不用类型检查,仅仅是定义;而使用 const 需要声明具体的数据类型,在编译阶段会进行类型检查。


前言

C 语言是一门抽象的面向过程的语言,C 语言广泛应用于底层开发,C 语言在计算机体系中占据着不可替代的作用,可以说 C 语言是编程的基础,也就是说,不管你学习任何语言,都应该把 C 语言放在首先要学的位置上。下面这张图更好的说明 C 语言的重要性

图片

可以看到,C 语言是一种底层语言,是一种系统层级的语言,操作系统就是使用 C 语言来编写的,比如 Windows、Linux、UNIX 。如果说其他语言是光鲜亮丽的外表,那么 C 语言就是灵魂,永远那么朴实无华。

C 语言特性

那么,既然 C 语言这么重要,它有什么值得我们去学的地方呢?我们不应该只因为它重要而去学,我们更在意的是学完我们能学会什么,能让我们获得什么。

C 语言的设计

C 语言是 1972 年,由贝尔实验室的丹尼斯·里奇(Dennis Ritch)肯·汤普逊(Ken Thompson)在开发 UNIX 操作系统时设计了C语言。C 语言是一门流行的语言,它把计算机科学理论和工程实践理论完美的融合在一起,使用户能够完成模块化的编程和设计。

计算机科学理论:简称 CS、是系统性研究信息与计算的理论基础以及它们在计算机系统中如何实现与应用的实用技术的学科。

C 语言具有高效性

C 语言是一门高效性语言,它被设计用来充分发挥计算机的优势,因此 C 语言程序运行速度很快,C 语言能够合理了使用内存来获得最大的运行速度

C 语言具有可移植性

C 语言是一门具有可移植性的语言,这就意味着,对于在一台计算机上编写的 C 语言程序可以在另一台计算机上轻松地运行,从而极大的减少了程序移植的工作量。

C 语言特点

  • C 语言是一门简洁的语言,因为 C 语言设计更加靠近底层,因此不需要众多 Java 、C# 等高级语言才有的特性,程序的编写要求不是很严格。
  • C 语言具有结构化控制语句,C 语言是一门结构化的语言,它提供的控制语句具有结构化特征,如 for 循环、if⋯ else 判断语句和 switch 语句等。
  • C 语言具有丰富的数据类型,不仅包含有传统的字符型、整型、浮点型、数组类型等数据类型,还具有其他编程语言所不具备的数据类型,比如指针。
  • C 语言能够直接对内存地址进行读写,因此可以实现汇编语言的主要功能,并可直接操作硬件。
  • C 语言速度快,生成的目标代码执行效率高。

下面让我们通过一个简单的示例来说明一下 C 语言

入门级 C 语言程序

下面我们来看一个很简单的 C 语言程序,我是 mac 电脑,所以我使用的是 xcode 进行开发,我觉得工具无所谓大家用着顺手就行。

第一个 C 语言程序

#include <stdio.h>

int main(int argc, const char * argv[]) {
    printf("Hello, World!\n");
    
    printf("My Name is cxuan \n");
    
    return 0;
}

你可能不知道这段代码是什么意思,不过别着急,我们先运行一下看看结果。

图片

这段程序输出了 Hello,World! 和 My Name is cxuan,最后一行是程序的执行结果,表示这段程序是否有错误。下面我们解释一下各行代码的含义。

首先,第一行的 #include <stdio.h>, 这行代码包含另一个文件,这一行告诉编译器把 stdio.h 的内容包含在当前程序中。stdio.h 是 C 编译器软件包的标准部分,它能够提供键盘输入和显示器输出。

什么是 C 标准软件包?C 是由 Dennis M 在1972年开发的通用,过程性,命令式计算机编程语言。C标准库是一组 C 语言内置函数,常量和头文件,例如<stdio.h>,<stdlib.h>,<math.h>等。此库将用作 C 程序员的参考手册。

我们后面会介绍 stdio.h ,现在你知道它是什么就好。

在 stdio.h 下面一行代码就是 main 函数。

C 程序能够包含一个或多个函数,函数是 C 语言的根本,就和方法是 Java 的基本构成一样。main() 表示一个函数名,int 表示的是 main 函数返回一个整数。void 表明 main() 不带任何参数。这些我们后面也会详细说明,只需要记住 int 和 void 是标准 ANSI C 定义 main() 的一部分(如果使用 ANSI C 之前的编译器,请忽略 void)。

然后是 /*一个简单的 C 语言程序*/ 表示的是注释,注释使用 /**/ 来表示,注释的内容在两个符号之间。这些符号能够提高程序的可读性。

注意:注释只是为了帮助程序员理解代码的含义,编译器会忽略注释

下面就是 { ,这是左花括号,它表示的是函数体的开始,而最后的右花括号 } 表示函数体的结束。{ } 中间是书写代码的地方,也叫做代码块。

int number 表示的是将会使用一个名为 number 的变量,而且 number 是 int 整数类型。

number = 11 表示的是把值 11 赋值给 number 的变量。

printf(Hello,world!\n); 表示调用一个函数,这个语句使用 printf() 函数,在屏幕上显示 Hello,world , printf() 函数是 C 标准库函数中的一种,它能够把程序运行的结果输出到显示器上。而代码 \n 表示的是 换行,也就是另起一行,把光标移到下一行。

然后接下来的一行 printf() 和上面一行是一样的,我们就不多说了。最后一行 printf() 有点意思,你会发现有一个 %d 的语法,它的意思表示的是使用整形输出字符串。

代码块的最后一行是 return 0,它可以看成是 main 函数的结束,最后一行是代码块 } ,它表示的是程序的结束。

好了,我们现在写完了第一个 C 语言程序,有没有对 C 有了更深的认识呢?肯定没有。。。这才哪到哪,继续学习吧。

现在,我们可以归纳为 C 语言程序的几个组成要素,如下图所示

图片

C 语言执行流程

C 语言程序成为高级语言的原因是它能够读取并理解人们的思想。然而,为了能够在系统中运行 hello.c 程序,则各个 C 语句必须由其他程序转换为一系列低级机器语言指令。这些指令被打包作为可执行对象程序,存储在二进制磁盘文件中。目标程序也称为可执行目标文件。

在 UNIX 系统中,从源文件到对象文件的转换是由编译器执行完成的。

gcc -o hello hello.c

gcc 编译器驱动从源文件读取 hello.c ,并把它翻译成一个可执行文件 hello。这个翻译过程可用如下图来表示

图片

这就是一个完整的 hello world 程序执行过程,会涉及几个核心组件:预处理器、编译器、汇编器、连接器,下面我们逐个击破。

  • 预处理阶段(Preprocessing phase),预处理器会根据开始的 # 字符,修改源 C 程序。#include <stdio.h> 命令就会告诉预处理器去读系统头文件 stdio.h 中的内容,并把它插入到程序作为文本。然后就得到了另外一个 C 程序hello.i,这个程序通常是以 .i为结尾。

  • 然后是 编译阶段(Compilation phase),编译器会把文本文件 hello.i 翻译成文本hello.s,它包括一段汇编语言程序(assembly-language program)

  • 编译完成之后是汇编阶段(Assembly phase),这一步,汇编器 as会把 hello.s 翻译成机器指令,把这些指令打包成可重定位的二进制程序(relocatable object program)放在 hello.c 文件中。它包含的 17 个字节是函数 main 的指令编码,如果我们在文本编辑器中打开 hello.o 将会看到一堆乱码。

  • 最后一个是链接阶段(Linking phase),我们的 hello 程序会调用 printf 函数,它是 C 编译器提供的 C 标准库中的一部分。printf 函数位于一个叫做 printf.o文件中,它是一个单独的预编译好的目标文件,而这个文件必须要和我们的 hello.o 进行链接,连接器(ld) 会处理这个合并操作。结果是,hello 文件,它是一个可执行的目标文件(或称为可执行文件),已准备好加载到内存中并由系统执行。

你需要理解编译系统做了什么

对于上面这种简单的 hello 程序来说,我们可以依赖编译系统(compilation system)来提供一个正确和有效的机器代码。然而,对于我们上面讲的程序员来说,编译器有几大特征你需要知道

  • 优化程序性能(Optimizing program performance),现代编译器是一种高效的用来生成良好代码的工具。对于程序员来说,你无需为了编写高质量的代码而去理解编译器内部做了什么工作。然而,为了编写出高效的 C 语言程序,我们需要了解一些基本的机器码以及编译器将不同的 C 语句转化为机器代码的过程。
  • 理解链接时出现的错误(Understanding link-time errors),在我们的经验中,一些非常复杂的错误大多是由链接阶段引起的,特别是当你想要构建大型软件项目时。
  • 避免安全漏洞(Avoiding security holes),近些年来,缓冲区溢出(buffer overflow vulnerabilities)是造成网络和 Internet 服务的罪魁祸首,所以我们有必要去规避这种问题。

系统硬件组成

为了理解 hello 程序在运行时发生了什么,我们需要首先对系统的硬件有一个认识。下面这是一张 Intel 系统产品的模型,我们来对其进行解释

图片

  • 总线(Buses):在整个系统中运行的是称为总线的电气管道的集合,这些总线在组件之间来回传输字节信息。通常总线被设计成传送定长的字节块,也就是 字(word)。字中的字节数(字长)是一个基本的系统参数,各个系统中都不尽相同。现在大部分的字都是 4 个字节(32 位)或者 8 个字节(64 位)。

图片

  • I/O 设备(I/O Devices):Input/Output 设备是系统和外部世界的连接。上图中有四类 I/O 设备:用于用户输入的键盘和鼠标,用于用户输出的显示器,一个磁盘驱动用来长时间的保存数据和程序。刚开始的时候,可执行程序就保存在磁盘上。

    每个I/O 设备连接 I/O 总线都被称为控制器(controller) 或者是 适配器(Adapter)。控制器和适配器之间的主要区别在于封装方式。控制器是 I/O 设备本身或者系统的主印制板电路(通常称作主板)上的芯片组。而适配器则是一块插在主板插槽上的卡。无论组织形式如何,它们的最终目的都是彼此交换信息。

  • 主存(Main Memory),主存是一个临时存储设备,而不是永久性存储,磁盘是 永久性存储 的设备。主存既保存程序,又保存处理器执行流程所处理的数据。从物理组成上说,主存是由一系列 DRAM(dynamic random access memory) 动态随机存储构成的集合。逻辑上说,内存就是一个线性的字节数组,有它唯一的地址编号,从 0 开始。一般来说,组成程序的每条机器指令都由不同数量的字节构成,C 程序变量相对应的数据项的大小根据类型进行变化。比如,在 Linux 的 x86-64 机器上,short 类型的数据需要 2 个字节,int 和 float 需要 4 个字节,而 long 和 double 需要 8 个字节。

  • 处理器(Processor)CPU(central processing unit)  或者简单的处理器,是解释(并执行)存储在主存储器中的指令的引擎。处理器的核心大小为一个字的存储设备(或寄存器),称为程序计数器(PC)。在任何时刻,PC 都指向主存中的某条机器语言指令(即含有该条指令的地址)。

    从系统通电开始,直到系统断电,处理器一直在不断地执行程序计数器指向的指令,再更新程序计数器,使其指向下一条指令。处理器根据其指令集体系结构定义的指令模型进行操作。在这个模型中,指令按照严格的顺序执行,执行一条指令涉及执行一系列的步骤。处理器从程序计数器指向的内存中读取指令,解释指令中的位,执行该指令指示的一些简单操作,然后更新程序计数器以指向下一条指令。指令与指令之间可能连续,可能不连续(比如 jmp 指令就不会顺序读取)

    下面是 CPU 可能执行简单操作的几个步骤

  • 加载(Load):从主存中拷贝一个字节或者一个字到内存中,覆盖寄存器先前的内容

  • 存储(Store):将寄存器中的字节或字复制到主存储器中的某个位置,从而覆盖该位置的先前内容

  • 操作(Operate):把两个寄存器的内容复制到 ALU(Arithmetic logic unit)。把两个字进行算术运算,并把结果存储在寄存器中,重写寄存器先前的内容。

算术逻辑单元(ALU)是对数字二进制数执行算术和按位运算的组合数字电子电路。

  • 跳转(jump):从指令中抽取一个字,把这个字复制到程序计数器(PC) 中,覆盖原来的值

剖析 hello 程序的执行过程

前面我们简单的介绍了一下计算机的硬件的组成和操作,现在我们正式介绍运行示例程序时发生了什么,我们会从宏观的角度进行描述,不会涉及到所有的技术细节

刚开始时,shell 程序执行它的指令,等待用户键入一个命令。当我们在键盘上输入了 ./hello 这几个字符时,shell 程序将字符逐一读入寄存器,再把它放到内存中,如下图所示

图片

当我们在键盘上敲击回车键的时候,shell 程序就知道我们已经结束了命令的输入。然后 shell 执行一系列指令来加载可执行的 hello 文件,这些指令将目标文件中的代码和数据从磁盘复制到主存。

利用 DMA(Direct Memory Access) 技术可以直接将磁盘中的数据复制到内存中,如下

图片

一旦目标文件中 hello 中的代码和数据被加载到主存,处理器就开始执行 hello 程序的 main 程序中的机器语言指令。这些指令将 hello,world\n 字符串中的字节从主存复制到寄存器文件,再从寄存器中复制到显示设备,最终显示在屏幕上。如下所示

图片

高速缓存是关键

上面我们介绍完了一个 hello 程序的执行过程,系统花费了大量时间把信息从一个地方搬运到另外一个地方。hello 程序的机器指令最初存储在磁盘上。当程序加载后,它们会拷贝到主存中。当 CPU 开始运行时,指令又从内存复制到 CPU 中。同样的,字符串数据 hello,world \n 最初也是在磁盘上,它被复制到内存中,然后再到显示器设备输出。从程序员的角度来看,这种复制大部分是开销,这减慢了程序的工作效率。因此,对于系统设计来说,最主要的一个工作是让程序运行的越来越快。

由于物理定律,较大的存储设备要比较小的存储设备慢。而由于寄存器和内存的处理效率在越来越大,所以针对这种差异,系统设计者采用了更小更快的存储设备,称为高速缓存存储器(cache memory, 简称为 cache 高速缓存),作为暂时的集结区域,存放近期可能会需要的信息。如下图所示

图片

图中我们标出了高速缓存的位置,位于高速缓存中的 L1高速缓存容量可以达到数万字节,访问速度几乎和访问寄存器文件一样快。容量更大的 L2 高速缓存通过一条特殊的总线链接 CPU,虽然 L2 缓存比 L1 缓存慢 5 倍,但是仍比内存要快 5 - 10 倍。L1 和 L2 是使用一种静态随机访问存储器(SRAM) 的硬件技术实现的。最新的、处理器更强大的系统甚至有三级缓存:L1、L2 和 L3。系统可以获得一个很大的存储器,同时访问速度也更快,原因是利用了高速缓存的 局部性原理。

Again:入门程序细节

现在,我们来探讨一下入门级程序的细节,由浅入深的来了解一下 C 语言的特性。

#include<stdio.h>

我们上面说到,#include<stdio.h> 是程序编译之前要处理的内容,称为编译预处理命令。

预处理命令是在编译之前进行处理。预处理程序一般以 # 号开头。

所有的 C 编译器软件包都提供 stdio.h 文件。该文件包含了给编译器使用的输入和输出函数,比如 println() 信息。该文件名的含义是标准输入/输出 头文件。通常,在 C 程序顶部的信息集合被称为 头文件(header)

C 的第一个标准是由 ANSI 发布的。虽然这份文档后来被国际标准化组织(ISO)采纳并且 ISO 发布的修订版也被 ANSI 采纳了,但名称 ANSI C(而不是 ISO C) 仍被广泛使用。一些软件开发者使用ISO C,还有一些使用 Standard C

C 标准库

除了 <sdtio.h> 外,C 标准库还包括下面这些头文件

图片

<assert.h>

提供了一个名为 assert 的关键字,它用于验证程序作出的假设,并在假设为假输出诊断消息。

<ctype.h>

C 标准库的 ctype.h 头文件提供了一些函数,可以用于测试和映射字符。

这些字符接受 int 作为参数,它的值必须是 EOF 或者是一个无符号字符

EOF是一个计算机术语,为 End Of File 的缩写,在操作系统中表示资料源无更多的资料可读取。资料源通常称为档案或串流。通常在文本的最后存在此字符表示资料结束。

C 标准库的 errno.h 头文件定义了整数变量 errno,它是通过系统调用设置的,这些库函数表明了什么发生了错误。

C 标准库的 float.h 头文件包含了一组与浮点值相关的依赖于平台的常量。

limits.h 头文件决定了各种变量类型的各种属性。定义在该头文件中的宏限制了各种变量类型(比如 char、int 和 long)的值。

locale.h 头文件定义了特定地域的设置,比如日期格式和货币符号

math.h 头文件定义了各种数学函数和一个宏。在这个库中所有可用的功能都带有一个 double 类型的参数,且都返回 double 类型的结果。

setjmp.h 头文件定义了宏 setjmp()、函数 longjmp() 和变量类型 jmp_buf,该变量类型会绕过正常的函数调用和返回规则。

signal.h 头文件定义了一个变量类型 sig_atomic_t、两个函数调用和一些宏来处理程序执行期间报告的不同信号。

stdarg.h 头文件定义了一个变量类型 va_list 和三个宏,这三个宏可用于在参数个数未知(即参数个数可变)时获取函数中的参数。

stddef .h 头文件定义了各种变量类型和宏。这些定义中的大部分也出现在其它头文件中。

stdlib .h 头文件定义了四个变量类型、一些宏和各种通用工具函数。

string .h 头文件定义了一个变量类型、一个宏和各种操作字符数组的函数。

time.h 头文件定义了四个变量类型、两个宏和各种操作日期和时间的函数。

main() 函数

main 函数听起来像是调皮捣蛋的孩子故意给方法名起一个 主要的 方法,来告诉他人他才是这个世界的中心。但事实却不是这样,而 main() 方法确实是世界的中心。

C 语言程序一定从 main() 函数开始执行,除了 main() 函数外,你可以随意命名其他函数。通常,main 后面的 () 中表示一些传入信息,我们上面的那个例子中没有传递信息,因为圆括号中的输入是 void 。

除了上面那种写法外,还有两种 main 方法的表示方式,一种是 void main(){} ,一种是 int main(int argc, char* argv[]) {}

  • void main() 声明了一个带有不确定参数的构造方法
  • int main(int argc, char* argv[]) {} 其中的 argc 是一个非负值,表示从运行程序的环境传递到程序的参数数量。它是指向 argc + 1 指针数组的第一个元素的指针,其中最后一个为null,而前一个(如果有的话)指向表示从主机环境传递给程序的参数的字符串。如果argv [0]不是空指针(或者等效地,如果argc> 0),则指向表示程序名称的字符串,如果在主机环境中无法使用程序名称,则该字符串为空。

注释

在程序中,使用 /**/ 的表示注释,注释对于程序来说没有什么实际用处,但是对程序员来说却非常有用,它能够帮助我们理解程序,也能够让他人看懂你写的程序,我们在开发工作中,都非常反感不写注释的人,由此可见注释非常重要。

图片

C 语言注释的好处是,它可以放在任意地方,甚至代码在同一行也没关系。较长的注释可以多行表示,我们使用 /**/ 表示多行注释,而 // 只表示的是单行注释。下面是几种注释的表示形式

// 这是一个单行注释

/* 多行注释用一行表示 */

/*
  多行注释用多行表示
    多行注释用多行表示
      多行注释用多行表示
        多行注释用多行表示

*/

函数体

在头文件、main 方法后面的就是函数体(注释一般不算),函数体就是函数的执行体,是你编写大量代码的地方。

变量声明

在我们入门级的代码中,我们声明了一个名为 number 的变量,它的类型是 int,这行代码叫做 声明,声明是 C 语言最重要的特性之一。这个声明完成了两件事情:定义了一个名为 number 的变量,定义 number 的具体类型。

int 是 C 语言的一个 关键字(keyword),表示一种基本的 C 语言数据类型。关键字是用于语言定义的。不能使用关键字作为变量进行定义。

示例中的 number 是一个 标识符(identifier),也就是一个变量、函数或者其他实体的名称。

变量赋值

在入门例子程序中,我们声明了一个 number 变量,并为其赋值为 11,赋值是 C 语言的基本操作之一。这行代码的意思就是把值 1 赋给变量 number。在执行 int number 时,编译器会在计算机内存中为变量 number 预留空间,然后在执行这行赋值表达式语句时,把值存储在之前预留的位置。可以给 number 赋不同的值,这就是 number 之所以被称为 变量(variable) 的原因。

图片

printf 函数

在入门例子程序中,有三行 printf(),这是  C 语言的标准函数。圆括号中的内容是从 main 函数传递给 printf 函数的。参数分为两种:实际参数(actual argument) 和 形式参数(formal parameters)。我们上面提到的 printf 函数括号中的内容,都是实参。

return 语句

在入门例子程序中,return 语句是最后一条语句。int main(void) 中的 int 表明 main() 函数应返回一个整数。有返回值的 C 函数要有 return 语句,没有返回值的程序也建议大家保留 return 关键字,这是一种好的习惯或者说统一的编码风格。

分号

在 C 语言中,每一行的结尾都要用 ; 进行结束,它表示一个语句的结束,如果忘记或者忽略分号会被编译器提示错误。

关键字

下面是 C 语言中的关键字,C 语言的关键字一共有 32 个,根据其作用不同进行划分

数据类型关键字

数据类型的关键字主要有 12 个,分别是

  • char: 声明字符型变量或函数
  • double: 声明双精度变量或函数
  • float: 声明浮点型变量或函数
  • int : 声明整型变量或函数
  • long: 声明长整型变量或函数
  • short : 声明短整型变量或函数
  • signed : 声明有符号类型变量或函数
  • _Bool:  声明布尔类型
  • _Complex :声明复数
  • _Imaginary: 声明虚数
  • unsigned : 声明无符号类型变量或函数
  • void : 声明函数无返回值或无参数,声明无类型指针

控制语句关键字

控制语句循环的关键字也有 12 个,分别是

循环语句

  • for : for 循环,使用的最多
  • do :循环语句的前提条件循环体
  • while:循环语句的循环条件
  • break : 跳出当前循环
  • continue:结束当前循环,开始下一轮循环

条件语句

  • if:条件语句的判断条件
  • else : 条件语句的否定分支,与 if 连用
  • goto: 无条件跳转语句

开关语句

  • switch: 用于开关语句
  • case:开关语句的另外一种分支
  • default : 开关语句中的其他分支

返回语句

retur:子程序返回语句(可以带参数,也看不带参数)

存储类型关键字

  • auto : 声明自动变量 一般不使用
  • extern : 声明变量是在其他文件正声明(也可以看做是引用变量)
  • register : 声明寄存器变量
  • static: 声明静态变量

其他关键字

  • const: 声明只读变量
  • sizeof : 计算数据类型长度
  • typedef: 用以给数据类型取别名
  • volatile : 说明变量在程序执行中可被隐含地改变


后记

这篇文章我们先介绍了 C 语言的特性,C 语言为什么这么火,C 语言的重要性,之后我们以一道 C 语言的入门程序讲起,我们讲了 C 语言的基本构成要素,C 语言在硬件上是如何运行的,C 语言的编译过程和执行过程等,在这之后我们又加深讲解了一下入门例子程序的组成特征。

如果你觉得这篇文章不错的的话,欢迎小伙伴们四连走起:点赞、在看、留言、分享。你的四连是我更文的动力。


这篇文章是 C 语言系列第三篇,之前两篇见

哦!这该死的 C 语言!

C 语言基础,来喽!

下面我们来介绍一下 C 语言中一个非常重要的概念 - 函数 (function)。首先就要先给函数下一个定义,函数就是完成特定任务的独立代码单元,这也就是说,一个函数肯定是要为了完成某种功能的,比如一个函数它能够执行加法运算,比如一个函数能交换两个数的值,还有一些函数可能只是为了打印某些东西等等。

函数也可以把很多大的任务拆分成一个个小的任务,通过设计每个小的任务来完成一个大的功能。一个设计优良的函数能够把程序中不需要了解的细节隐藏起来,从而使整个程序结构更加清晰,降低程序的修改难度。

C 语言程序由许多小的函数组成,一个程序会被保存在多个源文件中,每个文件可以单独编译,并可以与库中已编译过的函数一起加载。

下面我们通过一个例子来讨论一下函数是如何创建并使用的。

函数创建以及使用

函数的创建和使用会分为三个步骤:

  • 函数原型 ( function type ):这个是创建函数定义,也叫函数声明,能够表明一个文件中有哪些函数。
  • 函数调用 ( function call ):调用函数的位置,函数被定义出来肯定是要使用它的,在哪里使用的这个函数就被称为函数调用。
  • 函数定义 ( function definition ):这个就是函数的具体要干的什么事儿,也就是函数的具体逻辑是什么。

这么一看,函数和变量简直一模一样了,函数需要原型、调用和定义,而变量也需要这些,只不过变量还可以把原型和定义一起表示。

#include <stdio.h>int num; // 变量原型 int sum(int,int); // 函数原型 int main(void){ num = 12; // 变量定义  int num2 = 11; // 函数原型 + 函数定义   int all = sum(num,num2); // 变量使用 ,函数使用  printf("all = %d",all);  return 0;} // 函数定义 int sum(int a,int b){  return a + b;}

上面这段代码很好的列举了变量的定义以及函数的定义。

我们首先定义了一个 num 变量,这个就是变量的原型,然后在 main 函数中使用这个变量,就是变量的定义和使用,当然变量也可以直接使用原型 + 定义的方式( 上面的 num2 ),sum 函数演示了函数的原型、定义和使用。这里注意一点,main 函数比较特殊,它是所有方法的入口,而且 main 函数无需定义原型就能直接使用。

上面这段代码被一起保存在一个文件中,当然你也可以把它们保存在不同的文件中,只不过把它们放在同一个文件中我们在演示的时候比较方便,还有一点就是能够一起进行编译,这两个函数也可以定义在不同的文件中,分别进行编译,这样的好处是使程序更加易于维护,代码读起来更加顺畅,事实上项目中也是采用的单独编译的方式。当然你也可以把所有的功能都写在 main 函数中,只不过这样不易于维护,也不符合项目开发标准。

一个完整的函数定义形同如下:

返回值类型 函数名(参数列表){    函数体(函数的具体功能)}

注意我们上面说的只是一个完整的函数定义,而不是每个函数必须都要有返回值类型、参数列表、函数体,只有函数名是必须的(这个肯定好理解)。

当然也有函数定义出来什么都没有做,这就相当于是一个空函数,C 语言默认是允许空函数出现的,比如下面函数就是一个空函数。

sort(){}

sort 函数不执行任何操作也不返回任何值,这种函数可以在程序开发期间用于保留位置,留待以后再填充代码

程序其实就是一些变量和函数的集合,函数之间的通信可以通过函数参数、返回值来进行,函数通过传递参数,进行一系列的逻辑计算后,把返回值返回回去,以此达到函数交流、通信的目的。

对于函数来说,我们需要了解的两个关键点是参数列表返回值

函数参数

对于上面的 sum 函数来说,它的函数参数有两个,分别是 int 类型的 a 和 b,像这种在函数定义的括号中的变量被称为函数参数,这两个变量 a 和 b 也叫做形式参数,简称形参。

和定义在函数中的变量一样,形式参数也是局部变量,这些都属于函数私有的,作用域范围都是从进入函数开始起作用到函数执行完成后作用结束。

当函数接受参数时,函数原型用逗号分隔的列表指明参数的数量和类型,函数原型中你可以使用下面方式定义。

int sum(int a,int b); // 函数原型

也可以省略具体的变量名称,使用下面这种方式进行定义。

int sum(int,int); // 函数原型

在函数原型中没有定义变量,只是声明了两个 int 类型的参数。

除了形参之外,还有一个叫做实际参数 ( 实参 ) 的概念,就对应于上面代码中的 sum(num,num2),因为在调用 sum 的时候是知道 num 和 num2 的具体值的,像这种在调用函数中对参数进行传值的参数被称为实参。

简单点来说就是 形式参数是被调用函数中的变量,实际参数是调用函数赋给被调函数的具体值。实际参数可以是常量、变量,或甚至是更复杂的表达式。

被调函数不知道也不关心传入的数值是来自常量、变量还是一般表达式。实参在把值传递给函数的时候,其实是把值拷贝给被调函数的形式参数,所以无论被调函数对拷贝数据进行什么操作,都不会影响主调函数中的原始数据。

如下代码所示

#include <stdio.h>int num; // 变量原型 void sum(int,int); // 函数原型 int main(void){ num = 12; // 变量定义  int num2 = 11; // 函数原型 + 函数定义   sum(num,num2); // 变量使用 ,函数使用  printf("num = %d, num2 = %d",num,num2);  return 0;} // 函数定义 void sum(int a,int b){  int sumAll =  a + b; printf("sumAll = %d\n",sumAll); }

从输出结果可以看出,只要把值传递给 sum 后,不论 sum 函数内部进行何种处理,都不会影响 main 函数中 num 和 num2 的值。

函数返回值

我们上面说过函数之间的通信可以通过函数参数、返回值来进行。函数参数的传递方向是由函数调用者 -> 被调函数,而函数返回值的方向是和参数传递的方向相反,也就是被调函数 -> 函数调用者。

图片

当然并不是所有的函数都需要返回值,而且 return 语句后面也不一定需要表达式,当 return 语句后面没有表达式时,函数不会向调用者返回值。返回值会通过

return 表达式

进行返回,这个返回值的表达式类型和函数定义的返回值类型是一致的。

我们还用上面的 sum 函数来举例子

int sum(int a,int b){  return a + b;}

可以看到,sum 函数的表达式返回了 a + b,这其实就是一个表达式。而我们可以看到上面的 int main 方法,它的返回值是 0 ,这就是返回了一个常量。

return 后面可以不返回任何值,只是单独写一个 return 也是允许的,不过这种方式相当于没有返回任何值,所以它的函数类型可以定义为 void ,如下代码所示:

// 函数定义 void sum(int a,int b){  int sumAll =  a + b;  printf("sumAll = %d\n",sumAll);  return ; }

使用 return 语句的另外一个作用是终止函数的执行,强制把控制返回给调用函数,如下代码所示:

// 函数定义 int sum(int a,int b){   int sumAll =  a + b;  printf("sumAll = %d\n",sumAll);    if(a + b > 0){   return sumAll;  }else{    return 0;  }   }

如果 a + b 的值大于 0 的话,会直接返回 a + b 的和,否则为 0 。这个 if 的控制流程就是强制把结果返回给函数调用者。如果在 if 控制流程后面添加代码的话,那么这段代码不会执行,但是编译却没有给出警告。

图片

在 Java 编辑器中,如果最后一行代码出现在 return 强制返回后面的话,编译器会给出警告或者错误提示这行代码不会被执行。

函数类型

这里需要再强调一下函数类型,定义函数的时候需要声明函数的类型,带返回值的函数类型与返回值类型相同,没有返回值的函数应该将其定义为 void 类型。在老版本的 C 编译器中,如果你没有声明函数类型,编译器会默认把函数当做 int 类型来处理,不过这都是早期的事儿了,现在 C 标准不再支持默认函数为 int 类型这种情况。

在编写函数的时候,你就需要考虑好函数的具体功能是什么,也就是这个函数做了哪些事情,需不需要返回值,如果需要返回值的话,它的返回类型是什么。

函数声明

如果大家学过 Java ,可能对 C 这种先声明再定义的方式很不习惯,为什么函数在定义前需要再单独声明一下呢?我直接定义函数不声明行吗?答案肯定是不行的。

这个先声明再使用一直是 C 语言的标准,标准没有为什么,这就是一个标准,但是这个标准却是一个历史遗留问题。

上世纪 70 年代,大部分计算机内存很小,处理速度也比较差,所以导致代码的运行>时间很长,效率很差,这时候进行我们就需要考虑内存占用和编译时间的问题。因为 C 语言开发的比较早,而且 C 又是和硬件直接打交道的,所以提前声明一下函数能够提前分配内存空间,提升效率。说白了还是效率问题。

还有为什么 C 语言不选择采用预编译一下呢?

参考自 https://www.zhihu.com/question/20567689

首先,C语言出现的很早,那时候编译器也是一个很复杂的东西,当时计算机的内存、外存都很小,编译器做的太大也是一个麻烦的事情,所以事先声明就成为一种规范,保留下来,目的是为了让编译器更简单,虽然这一切已经很过时了。

其次,预编译的成本很高,与脚本语言、解释语言不同,C语言项目的规模可以很大,比如操作系统一级的C语言工程,其源文件有几万个,涉及全局符号几十万个,这样规模的项目预编译一次的负担是很高的,如果是整个项目完全扫描一遍,遍历所有全局符号,再进行真正的编译,估计很多码农都会疯了,等待时间会特别长。

再次,C语言是一种静态链接的语言,如果一个项目被设计成只编译,不链接的方式,比如有些库就会被设计成这样,有些合作开发的项目里,组员之间有时候也只提供obj文件,那么某些全局符号可能就不包含在现有的代码里,那么预搜索就一定找不到某些符号,那么该怎么办?如果不提供声明,这个代码就没办法编译了。

基于以上几点考虑,所以C语言才设计成这样,对于开发者而言,不算友好,但也不算很糟糕,甚至在某些方面是有好处的。

对于一个函数来说,它的最终目的就是通过一系列的逻辑处理获得我们想要的结果,逻辑处理离不开各种程序控制语句,比如说 While 、for、do while 等,下面我们就要来讨论一下这些程序控制语句。

程序控制语句

在有些时候的某些程序可能会重复做一件事情,就应该让计算机做这些重复性的工作,这才是我们需要计算机的意义。毕竟,需要重复计算是使用计算机的主要原因。

C 语言中有很多用于重复计算的方法,我们下面先来介绍其中的一种 --- while 循环

while 循环

下面我们通过一段代码来看一下 while 循环的使用。

#include <stdio.h>int main(){ int i = 1; while (i <= 10) {  printf("%d\n", i);  i++; } return 0;}

这段代码首先声明了一个 i 变量,然后使用了 while 循环来判断 i 的值,当 i 的值 <= 10 的时候,就会执行 while 中的循环逻辑,否则即 i > 10 就会直接跳过循环,不会输出任何结果就直接返回 0 。

如果 i 的值在 10 以内,就会循环打印出来 i 的值。这就是 while 循环的作用。

用通俗易懂的语句来描述 while 循环:当某个判断条件为 true 的时候,循环执行 while 中的代码块。

流程图如下:

图片

在 while 循环中的一个关键点就是进入 while 循环的判断,上面代码就是判断 i <= 10 ,这个表达式是关系运算符的一种。

while循环经常依赖测试表达式作比较,这样的表达式被称为关系表达式,出现在关系表达式中间的运算符叫做关系运算符,下表是我们经常使用到的关系运算符。


运算符说明
<小于
<=小于或等于
==等于
>=大于或等于
>大于
!=不等于


这些运算符会不单单会出现在 while 循环中,实际上任何逻辑控制语句都会使用到这几种运算符。

这里需要说明一点,不能用关系运算符来比较字符串,比如 ch != '@' 。

虽然关系运算符可以用来比较浮点数,但是要注意:比较浮点数时,尽量只使用 < 和 > 。因为浮点数的舍入误差会导致在逻辑上应该相等的两数却不相等。例如,3乘以1/3的积是1.0。如果用把1/3表示成小数点后面6位数字,乘积则是 .999999,不等于 1。

for 循环

for 循环一个非常明显的特征就是把三个行为组合在一处,也就是初始化、判断、更新,如下代码所示。

#include <stdio.h>int main(){ for(int i = 1;i <= 10;i++){  printf("%d\n", i); } return 0;}

可以看到,上面代码中 for 循环分别做了三件事情,每个表达式用 ; 进行分隔。

  • int i = 0 相当于是对 i 进行初始化操作;
  • i <= 10 相当于对 i 进行一个逻辑判断,逻辑判断是判断是否进行下一次循环的关键。
  • i++ 相当于是更新 i 的值。

for 循环的一般形式定义如下:

for(表达式1;表达式2;表达式3){    语句;}

这里要注意的是,表达式 1 只在循环开始时执行一次,而表达式 3 是循环结束后再执行。表达式 2 可以省略,省略后默认值为 1,则判断为真,for 循环就会成为一个死循环。

for 循环的流程图如下

图片

do while 循环

一般来说,循环的方式可以分为两种:入口循环和出口循环,什么意思呢?入口循环是先进行循环,再执行每次循环要做的事情,比如上面的 while 循环、for 循环,他们都是先进行判断是否需要进行下一次循环,如果需要的话,才会打印出 i 的值,这就是入口循环。

而出口循环则是要先执行代码,再判断是否要进行下一次循环,即在循环的每次迭代之后检查测试条件,这保证了至少执行循环体中的内容一次,典型的出口循环就是 do ... while。

我们把上面的代码进行修改:

#include <stdio.h>int main(){ int i = 1; do{  printf("%d\n", i);  i++; }while(i <= 10);  return 0;}

从输出结果可以看到,do while 循环在执行完循环体后才执行测试条件,所以 do ... while 循环至少执行循环体一次,而 for 循环和 while 循环在执行循环体之前先执行测试条件,do ... while 的一般形式如下

do 代码while ( 表达式 );

do ... while 循环的流程图如下

图片

到现在为止, C 语言中的程序控制语句我们都了解了,那么该如何进行选择呢?

实际上上面我们已经稍微讨论了一下如何选择的问题了。

while 循环和 for 循环很类似,这两类循环都是先进行一次循环条件的判断,然后再执行具体的循环体操作,只要一次循环条件不满足则一次都不会执行;而 do ... while 循环会至少先进行一次循环,然后才会执行循环判断。

一般来说,使用 for 循环的场景比较多,因为 for 循环形式更加简洁,而且在 for 循环中,变量和判断以及更新的作用域都在循环体内,不会有其他外部代码来修改这些变量,更可控,在 while 和 do ... while 循环中,变量的更新不可控,而且代码也没有 for 循环可读性强。

break 和 continue

break 和 continue 相当于是循环体内领导者的这样一个角色,有了这两个角色存在,循环体内的代码会根据这两个关键字来判断是中断循环还是执行下一次循环。

C 语言中的 break 有两种用法:

  • 一种用法是用在循环体中,当 break 出现在循环体中时,会中断这个循环。
  • 一种用法是用在 switch 语句中,用作中断这个 switch 语句的 case 条件。

break 用于中断循环:如下代码所示

#include <stdio.h>int main(void){ for(int i = 1;i <= 10;i++){  if(i == 5){   break;  }  printf("i 的值 = %d\n",i); }  return 0;}

输出的结果是 i 的值 = 1 - 4, 当 i == 5 时,会进入到 if 判断中,if 判断会直接触发 break,break 用于跳出当前循环,当前是 for 循环,所以 break 会直接跳到 for 循环外面,也就是直接 return ,不会再打印 i 的值。

图片

continue 关键字用于跳过当前循环,执行下一次循环,它和 break 很相似但是有着本质的区别,break 是跳出循环,continue 是执行下一次循环,我们同样拿这个代码来说明,只需要把上面的 break 改成 continue 即可。

#include <stdio.h>int main(void){ for(int i = 1;i <= 10;i++){  if(i == 5){   continue;  }  printf("i 的值 = %d\n",i); }  return 0;}

(这段代码的输出结果会输出出 i = 5 以外的值)

从输出结果可以看出,只有 i = 5 的值没有输出,这也就是说,当代码执行到 i == 5 的时候,会进行 continue 继续执行当前循环,从而跳过这次循环后面的代码,如下图所示。

图片

总结

这篇文章我主要和你聊了聊 C 语言中的函数,函数定义、函数返回值、参数以及程序控制流程中的三类循环的特点以及选型,最后又介绍了一下 break 和 continue 的作用。


Minio是一个开源的分布式文件存储系统,它基于 Golang 编写,虽然轻量,却拥有着不错的高性能,可以将图片、视频、音乐、pdf这些文件存储到多个主机,可以存储到多个Linux,或者多个Windows,或者多个Mac,Minio中存储最大文件可以达到5TB任何类型的文件都是支持的,主要应用在微服务系统中.


图片

一、准备机器


获取最新更新以及文章用到的软件包,请移步点击:查看更新

1、准备四台机器,(minio集群最少四台)。





192.168.223.131 minio-1192.168.223.128 minio-2192.168.223.129 minio-3192.168.223.130 minio-4

2、编辑hosts文件,将以上内容添加到hosts中


vim /etc/hosts

图片

部署(所有机器均执行)

以下的操作都需要在四台机器上执行

3、创建挂载磁盘路径


mkdir -p /data/minio_data/

4、挂载磁盘路径到文件系统

注意:需要将新建的目录挂在到对应的磁盘下,磁盘不挂载好,集群启动会报错,还需要注意的是挂载的文件系统至少要1G不然无法初始化导致集群报错

文件系统 容量 已用 可用 已用% 挂载点












[root@minio-1 minio]# df -h文件系统                                容量  已用  可用 已用% 挂载点devtmpfs                                470M     0  470M    0% /devtmpfs                                   487M     0  487M    0% /dev/shmtmpfs                                   487M  8.4M  478M    2% /runtmpfs                                   487M     0  487M    0% /sys/fs/cgroup/dev/mapper/centos_hadoop--master-root   47G   12G   36G   25% //dev/sda1                              1014M  240M  775M   24% /boottmpfs                                    98M     0   98M    0% /run/user/0tmpfs                                    98M   12K   98M    1% /run/user/42————————————————

5、将上面挂载磁盘路径挂载到相应的文件系统上


mount /dev/sda1 /data/minio_data/

6、查看挂载信息

图片

 7、创建minio目录


cd   /data/minio_data/

  8、下载安装包



wget http://dl.minio.org.cn/server/minio/release/linux-amd64/miniowget https://dl.min.io/client/mc/release/linux-amd64/mc

  9、赋执行权限(根据情况,这里赋全部权限)


chmod +x minio mc

  10、创建启动脚本,编辑run.sh文件


mkdir /data/minio_data && cd /data/minio_data

内容如下:







cat > run.sh <<EOF#!/bin/bashexport MINIO_ACCESS_KEY=minioexport MINIO_SECRET_KEY=Leo825#20210423/usr/local/bin/minio server --address=192.168.81.235:9000 http://192.168.81.235/data/minio_data/data1  http://192.168.81.236/data/minio_data/data1  http://192.168.81.237/data/minio_data/data1 http://192.168.81.234/data/minio_data/data1EOF

11、赋执行权限(根据情况,这里赋全部权限)


chmod 777 /data/minio_data/run.sh

12、创建启动服务,创建minio.service启动脚本


vim /usr/lib/systemd/system/minio.service


内容如下:



















[Unit]Description=Minio serviceDocumentation=https://docs.minio.io/

[Service]#安装包路径WorkingDirectory=/data/minio_data#启动命令路径ExecStart=/data/minio_data/run.sh

Restart=on-failureRestartSec=5

[Install]WantedBy=multi-user.target

复制代码

13、启动测试(所有机器执行)


复制代码

重新加载服务的配置文件


systemctl daemon-reload


启动minio服务


systemctl start minio


查看minio状态












systemctl status minio[root@minio-2 ~]# systemctl status minio● minio.service - Minio serviceLoaded: loaded (/usr/lib/systemd/system/minio.service; disabled; vendor preset: disabled)Active: active (running) since 日 2021-01-31 17:22:54 CST; 17s agoDocs: https://docs.minio.io/Main PID: 2036 (run.sh)Tasks: 8CGroup: /system.slice/minio.service├─2036 /bin/bash /data/minio_data/run.sh└─2039 /data/minio_data server http://192.168.223.232/data/minio_data/data1 http://192.168.223.233/data/minio_data/data1

关闭minio服务


systemctl stop minio

复制代码

14、访问地址

集群中的任何一台机器都可以访问:





http://192.168.223.132:9000/http://192.168.223.133:9000/http://192.168.223.134:9000/http://192.168.223.135:9000/

15、创建测试桶

图片

16、上传测试

图片

17、主机上可以查看到上传的文件


图片


二、nginx配置文件服务器访问

1、执行命令




mc  alias set minio http://192.168.223.132:9000/ minio Leo825#20210423 --api S3v4开启匿名访问mc policy set public minio/sy01

2、web页面开启匿名访问


图片

图片


 3、http访问,sy01是桶名称,方便浏览器访问。




























































upstream minio-server{  server 192.168.6.124:9000 weight=25 max_fails=2 fail_timeout=30s;  server 192.168.6.125:9000 weight=25 max_fails=2 fail_timeout=30s;  server 192.168.6.126:9000 weight=25 max_fails=2 fail_timeout=30s;  server 192.168.6.128:9000 weight=25 max_fails=2 fail_timeout=30s;}

server {  listen 8888;  server_name 192.168.6.120;

  #To allow special characters in headers  ignore_invalid_headers off;  # Allow any size file to be uploaded.  # Set to a value such as 1000m; to restrict file size to a specific value  client_max_body_size 0;  # To disable buffering  proxy_buffering off;

  location /sy01/ {     proxy_set_header X-Real-IP $remote_addr;     proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;     proxy_set_header X-Forwarded-Proto $scheme;     proxy_set_header Host $http_host;

     proxy_connect_timeout 300;     # Default is HTTP/1, keepalive is only enabled in HTTP/1.1     proxy_http_version 1.1;     proxy_set_header Connection "";     chunked_transfer_encoding off;

     proxy_pass http://minio-server;   }

   location / {     proxy_set_header X-Real-IP $remote_addr;     proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;     proxy_set_header X-Forwarded-Proto $scheme;     proxy_set_header Host $http_host;

     proxy_connect_timeout 300;     # Default is HTTP/1, keepalive is only enabled in HTTP/1.1     proxy_http_version 1.1;     proxy_set_header Connection "";     chunked_transfer_encoding off;

     proxy_pass http://minio-server; # If you are using docker-compose this would be the hostname i.e. minio     # Health Check endpoint might go here. See https://www.nginx.com/resources/wiki/modules/healthcheck/     # /minio/health/live;   }}

  4、https访问,minio是负载minio服务,sy01是桶名称,方便浏览器访问。
















































upstream minio-server{       server 192.168.6.124:9000 weight=25 max_fails=2 fail_timeout=30s;       server 192.168.6.125:9000 weight=25 max_fails=2 fail_timeout=30s;       server 192.168.6.126:9000 weight=25 max_fails=2 fail_timeout=30s;       server 192.168.6.128:9000 weight=25 max_fails=2 fail_timeout=30s;}

server {    listen 443 ssl;    server_name  192.168.6.120;

    ssl_certificate /etc/nginx/ssl/192.168.6.120.crt;    ssl_certificate_key /etc/nginx/ssl/192.168.6.120.key;

    location /sy01/ {         proxy_set_header X-Real-IP $remote_addr;         proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;         proxy_set_header X-Forwarded-Proto $scheme;         proxy_set_header Host $http_host;

         proxy_connect_timeout 300;         proxy_http_version 1.1;         proxy_set_header Connection "";         chunked_transfer_encoding off;         proxy_pass http://minio-server;  }

  location /minio {     proxy_set_header X-Real-IP $remote_addr;     proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;     proxy_set_header X-Forwarded-Proto $scheme;     proxy_set_header Host $http_host;

     proxy_connect_timeout 300;     proxy_http_version 1.1;     proxy_set_header Connection "";     chunked_transfer_encoding off;     proxy_pass http://minio-server;  }  }

或者换成tcp代理也可以实现,放在http层外,如果服务器在内网,访问在外网,中间经过了代理,或者隧道之内的,必须要要tcp,否则会http头部hred验证会失败。













upstream minio-server {        server 192.168.178.40:9000     max_fails=3 fail_timeout=30s;        server 192.168.178.41:9000     max_fails=3 fail_timeout=30s;        server 192.168.178.42:9000     max_fails=3 fail_timeout=30s;        server 192.168.178.43:9000     max_fails=3 fail_timeout=30s;}server {        listen 9000;        proxy_connect_timeout 2s;        proxy_timeout 900s;        proxy_pass minio-server;}