2024年6月

前言

对于后端程序员来说,编写SQL代码是日常工作中不可或缺的一部分。然而,随着数据复杂性的增加,如何高效、准确地编写SQL查询成为了新的挑战。幸运的是,SQL Translator的出现为后端程序员提供了一个强大的工具,将自然语言查询转换为精确的SQL代码,极大地提高了工作效率。

SQL Translator介绍

SQL Translator是一款利用人工智能将自然语言查询转换为 SQL 代码的互译工具,它的主要目的是简化SQL查询的编写过程,让非专业的SQL用户、数据库管理员、数据分析师等能够以自然语言的形式输入查询,然后快速获得对应的SQL代码。此外,用户还可以将已有的SQL代码输入,获取易于理解的自然语言翻译,从而更直观地理解SQL代码的含义。

此项目基于MIT License协议开源、100%免费。

工具特性

  • 支持暗黑模式。
  • 支持大小写切换。
  • 支持复制到剪贴板。
  • 支持SQL语法高亮显示。
  • 支持查看查询历史。

本地项目部署

克隆项目到本地

git clone https://github.com/whoiskatrin/sql-translator.git

安装所需的软件包

cd sql-translator
npm install

生成应用程序

npm run build

在.env文件中输入您的OPENAI API的密钥

OPENAI_API_KEY=$YOUR_API_KEY

启动开发服务器

npm start

在线效果演示

创建一个用户表

插入用户表数据

查询用户表数据

SQL语句翻译

查看查询历史记录

程序员常用的工具软件

该工具已收录到程序员常用的工具软件栏目中,欢迎关注该栏目发现更多优秀实用的开发工具!

容器

数组和切片

在Go语言中,数组和切片是两个基本的数据结构,用于存储和操作一组元素。它们有一些相似之处,但也有许多不同之处。下面我们详细介绍数组和切片的特点、用法以及它们之间的区别。

数组

数组是固定长度的序列,存储相同类型的元素。数组的长度在定义时就固定下来,不能改变。

package main

import "fmt"

func main() {
    // 定义一个长度为5的整型数组
    var arr [5]int
    fmt.Println(arr) // 输出: [0 0 0 0 0]

    // 定义并初始化一个长度为5的整型数组
    arr2 := [5]int{1, 2, 3, 4, 5}
    fmt.Println(arr2) // 输出: [1 2 3 4 5]

    // 让编译器推断数组长度
    arr3 := [...]int{1, 2, 3}
    fmt.Println(arr3) // 输出: [1 2 3]
}

可以使用索引来访问和修改数组中的元素:

package main

import "fmt"

func main() {
    arr := [3]int{1, 2, 3}
    fmt.Println(arr[0]) // 输出: 1

    arr[1] = 10
    fmt.Println(arr) // 输出: [1 10 3]
}

可以使用for循环来遍历数组:

package main

import "fmt"

func main() {
    arr := [3]int{1, 2, 3}
    for i, v := range arr {
        fmt.Println(i, v)
    }
}

切片

切片是动态数组,可以按需增长。切片由三个部分组成:指针、长度和容量。指针指向数组中切片的起始位置,长度是切片中的元素个数,容量是从切片起始位置到数组末尾的元素个数。

package main

import "fmt"

func main() {
    // 创建一个长度和容量为3的整型切片
    slice := make([]int, 3)
    fmt.Println(slice) // 输出: [0 0 0]

    // 定义并初始化一个切片
    slice2 := []int{1, 2, 3, 4, 5}
    fmt.Println(slice2) // 输出: [1 2 3 4 5]
}

切片可以通过数组或另一个切片生成:

package main

import "fmt"

func main() {
    arr := [5]int{1, 2, 3, 4, 5}
    slice := arr[1:4]
    fmt.Println(slice) // 输出: [2 3 4]
}

可以使用内置的append函数向切片追加元素:

package main

import "fmt"

func main() {
    slice := []int{1, 2, 3}
    slice = append(slice, 4, 5)
    fmt.Println(slice) // 输出: [1 2 3 4 5]
}

其他操作和数组基本一样,下面再说下数组和切片的区别:

  1. 长度

    • 数组的长度是固定的,定义后不能改变。
    • 切片的长度是动态的,可以通过append函数增加元素。
  2. 灵活性

    • 数组在使用上较为僵化,因为长度固定,适用于元素数量已知且固定的场景。
    • 切片更加灵活,适用于需要动态添加或删除元素的场景。
  3. 性能

    • 数组的访问速度通常比切片快,因为它们是固定大小的,编译器可以进行更多的优化。
    • 切片在性能上稍逊,但由于其灵活性,使用更加广泛。

container包

在Go语言的标准库中,container包提供了三种常见的数据结构:

(heap)、
双向链表
(list)和
环形队列
(ring)。这些数据结构为开发者提供了高效的插入、删除和访问操作。下面我们详细介绍这三个数据结构及其用法。

heap 包实现了堆数据结构。堆是一种特殊的树状结构,可以用于实现优先队列。
要使用 container/heap 包,必须定义一个实现 heap.Interface 接口的类型。该接口包含以下方法:

  • Len() int:返回元素数量。
  • Less(i, j int) bool:报告索引 i 处的元素是否小于索引 j 处的元素。
  • Swap(i, j int):交换索引 i 和 j 处的元素。
  • Push(x interface{}):将元素 x 添加到堆中。
  • Pop() interface{}:移除并返回堆中的最小元素。

这些方法要求用户明确实现堆的各种操作,增加了使用的复杂度。

package main

import (
    "container/heap"
    "fmt"
)

// 定义一个实现 heap.Interface 的类型
type IntHeap []int

func (h IntHeap) Len() int           { return len(h) }
func (h IntHeap) Less(i, j int) bool { return h[i] < h[j] }
func (h IntHeap) Swap(i, j int)      { h[i], h[j] = h[j], h[i] }

func (h *IntHeap) Push(x interface{}) {
    *h = append(*h, x.(int))
}

func (h *IntHeap) Pop() interface{} {
    old := *h
    n := len(old)
    x := old[n-1]
    *h = old[0 : n-1]
    return x
}

func main() {
    h := &IntHeap{2, 1, 5}
    heap.Init(h)
    heap.Push(h, 3)
    fmt.Printf("最小元素: %d\n", (*h)[0])
    for h.Len() > 0 {
        fmt.Printf("%d ", heap.Pop(h))
    }
    // 输出: 最小元素: 1
    //      1 2 3 5
}

list

list 包实现了双向链表(doubly linked list)。双向链表允许高效的插入和删除操作。

package main

import (
    "container/list"
    "fmt"
)

func main() {
    l := list.New()

    // 在链表前插入元素
    l.PushFront(1)
    l.PushFront(2)

    // 在链表后插入元素
    l.PushBack(3)

    // 遍历链表
    for e := l.Front(); e != nil; e = e.Next() {
        fmt.Println(e.Value)
    }
    // 输出:
    // 2
    // 1
    // 3
}

ring

ring 包实现了环形队列(circular list)。环形队列是一种首尾相连的队列结构。

package main

import (
    "container/ring"
    "fmt"
)

func main() {
    // 创建一个长度为3的环
    r := ring.New(3)

    // 初始化环中的值
    for i := 0; i < r.Len(); i++ {
        r.Value = i
        r = r.Next()
    }

    // 遍历环中的元素
    r.Do(func(p interface{}) {
        fmt.Println(p.(int))
    })
    // 输出:
    // 0
    // 1
    // 2
}

Channel

什么是Channel

在Go语言中,channel是用于在不同的goroutine之间进行通信的机制。它可以让一个goroutine将值发送到一个通道中,另一个goroutine从通道中接收值。channel的设计使得goroutine之间的通信和同步变得简洁而高效。

创建Channel

创建一个channel使用make函数,指定其传递的值的类型:

ch := make(chan int)

可以创建带缓冲的channel,缓冲大小在make时指定:

ch := make(chan int, 100)

发送和接收

发送和接收操作使用箭头符号<-:

ch <- 1   // 发送值1到channel
value := <-ch  // 从channel接收值并赋值给变量value

关闭Channel

channel可以被主动关闭,关闭channel使用close函数:

close(ch)

一旦一个channel被关闭,再往该channel发送值会导致panic,从已关闭的channel接收值将立即返回该类型的零值并且不会阻塞(如果通道里还存在未被接收的元素,这些元素也会正常返回,直到所有元素都被接收,才会开始返回零值)。

其他操作

无缓冲通道(缓冲大小为0)

  • 发送操作会阻塞直到有goroutine来接收这个值。
  • 接收操作会阻塞直到有值被发送到channel。

缓冲通道

  • 发送操作会在缓冲区满时阻塞。
  • 接收操作会在缓冲区为空时阻塞。

Select语句

select语句可以用于处理多个channel操作。它会阻塞直到其中一个channel可以进行操作。select语句中的各个分支是随机选择的:

select {
case val := <-ch1:
    fmt.Println("Received", val)
case ch2 <- 1:
    fmt.Println("Sent 1")
default:
    fmt.Println("No communication")
}

示例

基于channel,实现一个简单的生产者-消费者模型:

package main

import (
    "fmt"
    "time"
)

func producer(ch chan int) {
    //循环往通道发送5个元素,间隔1秒
    for i := 0; i < 5; i++ {
        fmt.Println("Producing", i)
        ch <- i
        time.Sleep(time.Second)
    }
    //发送完所有消息后关闭通道
    close(ch)
}

func consumer(ch chan int) {
    //可以通过range遍历通道的元素
    //因为生产者已经关闭了通道,所以遍历完所有元素后,循环会自己退出
    for val := range ch {
        fmt.Println("Consuming", val)
        time.Sleep(time.Second)
    }
}

func main() {
    ch := make(chan int, 2)
    go producer(ch)
    consumer(ch)
}

常见问题

  1. 避免在接收端关闭通道
    :通常由发送方负责关闭channel。
  2. 避免重复关闭通道
    :多次关闭同一个channel会导致panic。
  3. 避免从未使用的通道发送和接收
    :未使用的channel操作会导致死锁。比如只接收,没发送,程序会一直阻塞在接收处。

函数

在Go语言中,函数是一等公民(first-class citizen),这意味着函数可以像其他类型(例如整数、字符串等)一样使用和操作。这一特性使得函数的使用非常灵活和强大。具体来说,函数作为一等公民具有以下特点:

函数可以赋值给变量

你可以将一个函数赋值给一个变量,这样就可以通过这个变量来调用函数:

package main

import "fmt"

func main() {
    add := func(a, b int) int {
        return a + b
    }
    fmt.Println(add(3, 4)) // 输出: 7
}

函数可以作为参数传递给另一个函数

函数可以作为参数传递给其他函数,这使得可以实现高阶函数:

package main

import "fmt"

func applyOperation(a, b int, op func(int, int) int) int {
    return op(a, b)
}

func main() {
    add := func(a, b int) int {
        return a + b
    }
    result := applyOperation(5, 3, add)
    fmt.Println(result) // 输出: 8
}

函数可以作为返回值从另一个函数返回

函数可以从另一个函数返回,这使得可以动态生成函数:

package main

import "fmt"

func createMultiplier(factor int) func(int) int {
    return func(x int) int {
        return x * factor
    }
}

func main() {
    double := createMultiplier(2)
    triple := createMultiplier(3)
    fmt.Println(double(4)) // 输出: 8
    fmt.Println(triple(4)) // 输出: 12
}

函数可以嵌套定义

在Go语言中,可以在函数内部定义另一个函数:

package main

import "fmt"

func main() {
    outer := func() {
        fmt.Println("This is the outer function.")

        inner := func() {
            fmt.Println("This is the inner function.")
        }

        inner()
    }

    outer()
}

函数可以作为匿名函数

匿名函数是一种无需命名的函数,可以直接使用:

package main

import "fmt"

func main() {
    result := func(a, b int) int {
        return a + b
    }(3, 5)
    
    fmt.Println(result) // 输出: 8
}

闭包(Closures)

Go语言支持闭包,闭包是一个函数,这个函数可以捕获并记住其所在环境的变量:

package main

import "fmt"

func main() {
    x := 10

    // 定义一个修改外部变量x的闭包
    closure := func() int {
        x += 1
        return x
    }

    fmt.Println(closure()) // 输出: 11
    fmt.Println(x)         // 输出: 11
}

package main

import "fmt"

func main() {
    counter := func() func() int {
        count := 0
        return func() int {
            count++
            return count
        }
    }()
    
    fmt.Println(counter()) // 输出: 1
    fmt.Println(counter()) // 输出: 2
    fmt.Println(counter()) // 输出: 3
}

错误处理

Go语言中的错误处理方式不同于传统的异常处理机制。它采用了明确的、基于值的错误处理方法。每个函数可以返回一个错误值来表示是否出现了问题。

基本错误处理

Go语言中使用内置的error接口类型来表示错误。error接口定义如下:

type error interface {
    Error() string
}

函数通常返回一个error类型的值来表示操作是否成功。如果没有错误,返回nil。

package main

import (
    "errors"
    "fmt"
)

// 定义一个函数,返回错误
func divide(a, b int) (int, error) {
    if b == 0 {
        //如果有问题,通过New方法新建一个错误信息
        return 0, errors.New("division by zero")
    }
    //如果没有错误返回nil
    return a / b, nil
}

func main() {
    result, err := divide(4, 2)
    if err != nil {
        fmt.Println("Error:", err)
    } else {
        fmt.Println("Result:", result)
    }

    result, err = divide(4, 0)
    if err != nil {
        fmt.Println("Error:", err)
    } else {
        fmt.Println("Result:", result)
    }
}

自定义错误类型

除了使用errors.New创建简单错误外,Go语言允许我们定义自己的错误类型,实现更丰富的错误信息。

package main

import (
    "fmt"
)

// 自定义错误类型
type MyError struct {
    Code    int
    Message string
}

// 实现error接口的Error方法
func (e *MyError) Error() string {
    return fmt.Sprintf("Code: %d, Message: %s", e.Code, e.Message)
}

// 定义一个函数,返回自定义错误(只要实现了Error()方法,就可以直接返回error类型)
func doSomething(flag bool) error {
    if !flag {
        return &MyError{Code: 123, Message: "something went wrong"}
    }
    return nil
}

func main() {
    err := doSomething(false)
    if err != nil {
        fmt.Println("Error:", err)
        
        // 类型断言,获取具体的错误类型
        if myErr, ok := err.(*MyError); ok {
            fmt.Println("Custom Error Code:", myErr.Code)
        }
    }
}

异常处理机制

Go语言也有类似异常的处理机制,即defer、panic和recover,但它们主要用于处理程序中不可恢复的错误。

  • defer
    :用于延迟执行一个函数,在函数返回前执行。如果一个函数里面有多个defer语句,写在最后面的defer最先执行。
  • panic
    :意料之外的错误,也可以手动调用。如果panic没有处理,程序会终止。
  • recover
    :恢复panic,并停止程序终止的过程。
package main

import "fmt"

func main() {
    defer func() {
        //使用defer执行一个匿名函数,确保recover一定能执行
        if r := recover(); r != nil {
            //恢复panic,此处可以进行异常处理,比如打印日志
            fmt.Println("Recovered from panic:", r)
        }
    }()

    fmt.Println("Starting the program")
    //手动触发一个panic
    panic("Something went wrong!")
    fmt.Println("This line will not be executed")
}

SDL2 创建渲染器时只能指定使用软件渲染还是硬件加速,无法选择使用哪种图形引擎实现硬件加速。SDL3 对此做了优化,可以在创建渲染器时指定
rendering driver
也就是图形引擎,比如在 Windows 平台下可以指定使用 D3D11 也可以指定使用 OpenGL 或者 Vulkan。

指定图形引擎

SDL_CreateRenderer
函数的第二个参数
name
表示指定使用的
rendering driver name
,传
NULL
表示使用第一个支持的
rendering driver
,在 Windows 系统下通常是 D3D11。

SDL_Renderer * SDLCALL SDL_CreateRenderer(SDL_Window *window, const char *name)

SDL3 接口文件中没有预定义
rendering driver name
,可以通过
SDL_GetNumRenderDrivers

SDL_GetRenderDriver
两个函数枚举当前所支持的图形引擎:

int count = SDL_GetNumRenderDrivers();
for (int i = 0; i < count; ++i) {
    const char* name = SDL_GetRenderDriver(i);
    SDL_Log("Render driver[%d]: %s", i, name);
}

在 Windows 系统下执行结果如下:

INFO: Render driver[0]: direct3d11
INFO: Render driver[1]: direct3d12
INFO: Render driver[2]: direct3d
INFO: Render driver[3]: opengl
INFO: Render driver[4]: opengles2
INFO: Render driver[5]: vulkan
INFO: Render driver[6]: software

其中
direct3d
指的是 D3D9,
software
指软件渲染,我们可以通过这些名字指定渲染器使用的渲染引擎。

渲染性能测试

实现一个简单的类用来测试渲染帧率

// performance.h
...

class Performance final
{
public:
    Performance();
    ~Performance();

    void Reset();
    void IncreaseFrameCount();
    void PrintEverySecond();

private:
    using Clock = std::chrono::high_resolution_clock;
    using TimePoint = std::chrono::time_point<Clock>;

    TimePoint start_time_;
    uint64_t frame_count_ = 0;

    TimePoint last_print_time_;
    uint64_t last_frame_count_ = 0;
};
// performance.cpp
...

Performance::Performance()
{
    Reset();
}

Performance::~Performance() {}

void Performance::Reset()
{
    start_time_ = Clock::now();
    last_print_time_ = start_time_;
    frame_count_ = 0;
}

void Performance::IncreaseFrameCount()
{
    frame_count_++;
}

void Performance::PrintEverySecond()
{
    assert(start_time_.time_since_epoch().count() > 0);
    assert(last_print_time_ >= start_time_);
    auto now = Clock::now();
    auto duration = std::chrono::duration_cast<std::chrono::milliseconds>(now - last_print_time_);
    if (duration.count() >= 1000) {
        double elapsed_seconds =
            std::chrono::duration_cast<std::chrono::milliseconds>(now - start_time_).count() /
            1000.0;
        double average_fps = frame_count_ / elapsed_seconds;
        double realtime_fps = (frame_count_ - last_frame_count_) / (duration.count() / 1000.0);
        last_print_time_ = now;
        last_frame_count_ = frame_count_;

        fprintf(stderr, "Performance: FPS(AVR|RT): %.2f|%.2f      \r", average_fps, realtime_fps);
    }
}

我们先测试 D3D11 的渲染帧率:

INFO: Created renderer: direct3d11
INFO: VSync: 0
Performance: FPS(AVR|RT): 32805.16|34470.00   

3 万多帧,还不错。这是全力渲染的结果,没有开启垂直同步,可以调用
SDL_SetRenderVSync
函数设置垂直同步:

int vsync = disable_vsync ? 0 : 1;
SDL_SetRenderVSync(renderer, vsync);
SDL_Log("VSync: %d", vsync);

再次测试渲染帧率,60fps,和屏幕刷新率一致:

INFO: Created renderer: direct3d11
INFO: VSync: 1
Performance: FPS(AVR|RT): 59.95|60.04   

关闭垂直同步,对各渲染引擎分别进行帧率测试,结果如下:

direct3d11 direct3d12 direct3d opengl opengles2 vulkan software
33113.44 1155.43 1729.66 1673.66 1716.95 1565.44 1668.42

D3D11 一骑绝尘,看来优化的不错。

注意这只是一个简单的测试,性能瓶颈主要在从 CPU 提交渲染指令到 GPU 的过程,所以不代表 D3D11 的渲染性能和其他图形引擎真的有这么大的差距。实际上对于复杂的图形渲染,除软件渲染外所有基于 GPU 的渲染性能上不会有太大的差距。


《FFmpeg开发实战:从零基础到短视频上线》一书的“3.4.3  把原始的H264文件封装为MP4格式”介绍了如何把H.264裸流封装为MP4文件。那么在网络上传输的H.264裸流是怎样被接收端获取视频格式的呢?前文指出H.264流必定以“SPS帧→PPS帧→IDR帧”开头,接下来就来验证是否确实如此。

这里用到了雷霄骅雷神写的H264分析器,在此向雷神致敬,雷神10年前写的小程序至今仍然好用。打开H264分析器,该软件的初始界面如下图所示:

单击文件路径栏右边的打开按钮,在弹出的文件对话框中选择某个H.264裸流文件,再单击界面右下角的开始按钮,分析器便开始分析H264文件的内容格式,分析后的结果界面如下图所示:

从分析结果可见,H.264裸流的开头三帧果然是“SPS帧→PPS帧→IDR帧”。单击列表中的某个帧,界面右侧会显示该帧的详细字段信息。

当然,分析器只能读取H.264裸流文件。倘若让分析器读取MP4文件,就无法正常读出各帧信息。那么流媒体服务器又是怎么把MP4文件转化为H.264裸流的呢?
以ZLMediaKit为例,它在向推流序列插入I帧时做了特殊处理,一旦出现I帧,就自动插入SPS与PPS等配置帧。具体代码在ZLMediaKit框架的ext-codec/H264.cpp,查看该源码的H264Track::inputFrame_l函数,找到以下的代码片段,可见程序在判断关键帧之后调用了insertConfigFrame函数。

// 判断是否是I帧, 并且如果是,那判断前面是否插入过config帧, 如果插入过就不插入了
if (frame->keyFrame() && !_latest_is_config_frame) {
    insertConfigFrame(frame); // 插入SPS帧和PPS帧
}
if(!frame->dropAble()){
    _latest_is_config_frame = false;
}
ret = VideoTrack::inputFrame(frame);

找到insertConfigFrame函数的定义代码如下,果然函数内容依次插入了SPS帧和PPS帧:

// 插入SPS帧和PPS帧
void H264Track::insertConfigFrame(const Frame::Ptr &frame) {
    if (!_sps.empty()) { // 插入SPS帧
        auto spsFrame = FrameImp::create<H264Frame>();
        spsFrame->_prefix_size = 4;
        spsFrame->_buffer.assign("\x00\x00\x00\x01", 4);
        spsFrame->_buffer.append(_sps);
        spsFrame->_dts = frame->dts();
        spsFrame->setIndex(frame->getIndex());
        VideoTrack::inputFrame(spsFrame);
    }
    if (!_pps.empty()) { // 插入PPS帧
        auto ppsFrame = FrameImp::create<H264Frame>();
        ppsFrame->_prefix_size = 4;
        ppsFrame->_buffer.assign("\x00\x00\x00\x01", 4);
        ppsFrame->_buffer.append(_pps);
        ppsFrame->_dts = frame->dts();
        ppsFrame->setIndex(frame->getIndex());
        VideoTrack::inputFrame(ppsFrame);
    }
}

由此可见,ZLMediaKit在每个关键帧前面都额外插入了SPS帧和PPS帧,确保H.264裸流维持着形如“SPS帧→PPS帧→IDR帧”的队形。如果不添加SPS和PPS,客户端在拉流时会报错如下:

[NULL @ 0000022ed7782540] non-existing PPS 0 referenced

只有加上SPS与PPS,客户端才能正常拉流解析数据,才能正常渲染视频画面。
更多详细的FFmpeg开发知识参见
《FFmpeg开发实战:从零基础到短视频上线》
一书。

今天给大家介绍一款非常实用的工具——
Postman Interceptor

这个工具可以捕捉任何网站的请求,并将其发送到Postman客户端。

对于经常和API打交道的程序员来说,Postman Interceptor真的是神器级别的存在。

下面就让我详细说说这个插件怎么用,有哪些优势,以及我的一些使用感受。

什么是Postman Interceptor?

Postman Interceptor是Postman团队推出的一款浏览器扩展,它可以帮助你在浏览器中发送带有Cookies的请求,通过Postman应用捕捉和发送这些请求。

此外,它还可以发送一些
Chrome浏览器通常限制的头信息,这对于测试API非常关键。以前这些操作可能需要使用代理服务器,现在有了Postman Interceptor,一切都变得简单多了,无需额外安装步骤或配置。

Postman Interceptor的下载和安装

1.获取安装包:
考虑到网络原因,部分同学无法实现在线安装,这种情况下可以直接通过离线安装的方法来解决。
这里已经把安装包下载好了


回复关键字:
Postman Interceptor
获取
Postman
插件

安装包。


2.安装包下载好后,打开chrome浏览器的扩展程序界面

  • 对于Chrome浏览器: 在地址栏中输入 chrome://extensions/ 并按Enter。
  • 对于
    Microsoft Edge(基于Chromium的新版本): 输入 edge://extensions/ 并按Enter。


3. 启用开发者模式

在扩展程序页面的右上角,你会看到一个“开发者模式”的切换按钮。确保它是打开(或启用)的。


4.拖放ZIP文件

将先前下载的文件如下图,直接拖放到扩展程序页面中。


这样就安装完成了。

Postman Interceptor的使用方法

启用
拦截器
:打开Postman客户端,点击右上角的“Interceptor”图标,确保它处于启用状态。如果这是你第一次使用,Postman可能会提示你安装Postman Interceptor扩展,这时你只需按照提示操作即可。

捕捉请求:启用拦截器后,Postman Interceptor会自动捕捉浏览器中发送的请求。你可以在Postman客户端中查看这些请求的详细信息,包括URL、方法、头信息、Cookies和响应数据等。

发送带有Cookies的请求:在Postman客户端中,你可以选择使用浏览器中的Cookies发送请求。这对于需要身份验证的API非常有用,因为你可以直接使用浏览器中已登录的会话信息,而不需要手动设置Cookies。

发送受限头信息:Postman Interceptor可以帮助你发送一些Chrome浏览器通常限制的头信息,例如自定义的Authorization头或某些安全头信息。这对于测试需要复杂头信息的API非常有帮助。

Postman Interceptor能解决什么问题?

我觉得,Postman Interceptor最大的优势在于它的便捷性和强大的功能集成。以前,我们可能需要使用代理服务器来捕捉和修改请求,这不仅麻烦,而且需要额外的配置。有了Postman Interceptor,你只需简单的几步操作,就能轻松捕捉并发送任何请求,大大简化了API调试和测试的过程。

Postman Interceptor带来了什么好处?

  • 提高效率:通过
    浏览器扩展和Postman客户端的无缝集成,Postman Interceptor大大简化了API调试和测试的过程。

  • 便捷的Cookies处理:你可以直接使用浏览器中的会话信息发送请求,无需手动设置Cookies。

  • 支持受限头信息:Postman Interceptor可以发送一些Chrome浏览器通常限制的头信息,这对于测试需要复杂头信息的API非常有帮助。

使用感受

Postman Interceptor真的是一款神器,尤其对于经常和API打交道的开发者来说。我在日常开发中,经常需要调试一些需要复杂头信息和Cookies的API,有了Postman Interceptor,一切都变得简单多了。

以前需要使用代理服务器才能完成的操作,现在只需几步简单设置就能搞定,大大提升了开发效率。

同学们,如果你还没有使用过Postman Interceptor,强烈建议你下载安装一个试试。