基于MindSpore实现BERT对话情绪识别
本文分享自华为云社区
《【昇思25天学习打卡营打卡指南-第二十四天】基于 MindSpore 实现 BERT 对话情绪识别》
,作者:JeffDing。
模型简介
BERT全称是来自变换器的双向编码器表征量(Bidirectional Encoder Representations from Transformers),它是Google于2018年末开发并发布的一种新型语言模型。与BERT模型相似的预训练语言模型例如问答、命名实体识别、自然语言推理、文本分类等在许多自然语言处理任务中发挥着重要作用。模型是基于Transformer中的Encoder并加上双向的结构,因此一定要熟练掌握Transformer的Encoder的结构。
BERT模型的主要创新点都在pre-train方法上,即用了Masked Language Model和Next Sentence Prediction两种方法分别捕捉词语和句子级别的representation。
在用Masked Language Model方法训练BERT的时候,随机把语料库中15%的单词做Mask操作。对于这15%的单词做Mask操作分为三种情况:80%的单词直接用[Mask]替换、10%的单词直接替换成另一个新的单词、10%的单词保持不变。
因为涉及到Question Answering (QA) 和 Natural Language Inference (NLI)之类的任务,增加了Next Sentence Prediction预训练任务,目的是让模型理解两个句子之间的联系。与Masked Language Model任务相比,Next Sentence Prediction更简单些,训练的输入是句子A和B,B有一半的几率是A的下一句,输入这两个句子,BERT模型预测B是不是A的下一句。
BERT预训练之后,会保存它的Embedding table和12层Transformer权重(BERT-BASE)或24层Transformer权重(BERT-LARGE)。使用预训练好的BERT模型可以对下游任务进行Fine-tuning,比如:文本分类、相似度判断、阅读理解等。
对话情绪识别(Emotion Detection,简称EmoTect),专注于识别智能对话场景中用户的情绪,针对智能对话场景中的用户文本,自动判断该文本的情绪类别并给出相应的置信度,情绪类型分为积极、消极、中性。 对话情绪识别适用于聊天、客服等多个场景,能够帮助企业更好地把握对话质量、改善产品的用户交互体验,也能分析客服服务质量、降低人工质检成本。
安装mindnlp
pip install mindnlp
下面以一个文本情感分类任务为例子来说明BERT模型的整个应用过程。
import os
import mindsporefrommindspore.dataset import text, GeneratorDataset, transformsfrommindspore import nn, contextfrommindnlp._legacy.engine import Trainer, Evaluatorfrommindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallbackfrommindnlp._legacy.metrics import Accuracy
# prepare datasetclassSentimentDataset:"""Sentiment Dataset"""def __init__(self, path):
self.path=path
self._labels, self._text_a=[], []
self._load()
def _load(self):
with open(self.path,"r", encoding="utf-8") asf:
dataset=f.read()
lines= dataset.split("\n")for line in lines[1:-1]:
label, text_a= line.split("\t")
self._labels.append(int(label))
self._text_a.append(text_a)
def __getitem__(self, index):returnself._labels[index], self._text_a[index]
def __len__(self):return len(self._labels)
数据集
这里提供一份已标注的、经过分词预处理的机器人聊天数据集,来自于百度飞桨团队。数据由两列组成,以制表符(’\t’)分隔,第一列是情绪分类的类别(0表示消极;1表示中性;2表示积极),第二列是以空格分词的中文文本,如下示例,文件为 utf8 编码。
label–text_a
0–谁骂人了?我从来不骂人,我骂的都不是人,你是人吗 ?
1–我有事等会儿就回来和你聊
2–我见到你很高兴谢谢你帮我
这部分主要包括数据集读取,数据格式转换,数据 Tokenize 处理和 pad 操作。
wget https://baidu-nlp.bj.bcebos.com/emotion_detection-dataset-1.0.0.tar.gz -O emotion_detection.tar.gz tar xvf emotion_detection.tar.gz
数据加载和数据预处理
新建 process_dataset 函数用于数据加载和数据预处理,具体内容可见下面代码注释。
import numpy asnp
def process_dataset(source, tokenizer, max_seq_len=64, batch_size=32, shuffle=True):
is_ascend= mindspore.get_context('device_target') == 'Ascend'column_names= ["label", "text_a"]
dataset= GeneratorDataset(source, column_names=column_names, shuffle=shuffle)
# transforms
type_cast_op=transforms.TypeCast(mindspore.int32)
def tokenize_and_pad(text):ifis_ascend:
tokenized= tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)else:
tokenized=tokenizer(text)return tokenized['input_ids'], tokenized['attention_mask']
# map dataset
dataset= dataset.map(operations=tokenize_and_pad, input_columns="text_a", output_columns=['input_ids', 'attention_mask'])
dataset= dataset.map(operations=[type_cast_op], input_columns="label", output_columns='labels')
# batch datasetifis_ascend:
dataset=dataset.batch(batch_size)else:
dataset= dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),'attention_mask': (None, 0)})return dataset
昇腾NPU环境下暂不支持动态Shape,数据预处理部分采用静态Shape处理:
frommindnlp.transformers import BertTokenizer
tokenizer= BertTokenizer.from_pretrained('bert-base-chinese')
tokenizer.pad_token_id
dataset_train= process_dataset(SentimentDataset("data/train.tsv"), tokenizer)
dataset_val= process_dataset(SentimentDataset("data/dev.tsv"), tokenizer)
dataset_test= process_dataset(SentimentDataset("data/test.tsv"), tokenizer, shuffle=False)
print(next(dataset_train.create_tuple_iterator()))
模型构建
通过 BertForSequenceClassification 构建用于情感分类的 BERT 模型,加载预训练权重,设置情感三分类的超参数自动构建模型。后面对模型采用自动混合精度操作,提高训练的速度,然后实例化优化器,紧接着实例化评价指标,设置模型训练的权重保存策略,最后就是构建训练器,模型开始训练。
frommindnlp.transformers import BertForSequenceClassification, BertModelfrommindnlp._legacy.amp import auto_mixed_precision
#set bert config and define parameters fortraining
model= BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)
model= auto_mixed_precision(model, 'O1')
optimizer= nn.Adam(model.trainable_params(), learning_rate=2e-5)
metric=Accuracy()
# define callbacks to save checkpoints
ckpoint_cb= CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)
best_model_cb= BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)
trainer= Trainer(network=model, train_dataset=dataset_train,
eval_dataset=dataset_val, metrics=metric,
epochs=5, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb])
# start training
trainer.run(tgt_columns="labels")
模型验证
将验证数据集加再进训练好的模型,对数据集进行验证,查看模型在验证数据上面的效果,此处的评价指标为准确率。
evaluator = Evaluator(network=model, eval_dataset=dataset_test, metrics=metric)
evaluator.run(tgt_columns="labels")
模型推理
遍历推理数据集,将结果与标签进行统一展示。
dataset_infer = SentimentDataset("data/infer.tsv")
def predict(text, label=None):
label_map= {0: "消极", 1: "中性", 2: "积极"}
text_tokenized=Tensor([tokenizer(text).input_ids])
logits=model(text_tokenized)
predict_label= logits[0].asnumpy().argmax()
info= f"inputs: '{text}', predict: '{label_map[predict_label]}'" if label isnot None:
info+= f", label: '{label_map[label]}'"print(info)frommindspore import Tensorfor label, text indataset_infer:
predict(text, label)
自定义推理数据集
自己输入推理数据,展示模型的泛化能力。
predict("家人们咱就是说一整个无语住了 绝绝子叠buff")