分类 调试 下的文章

当我们进行程序调试时,有时调试器会直接告诉你符号文件不对,或则显示出的调用栈不对,当你怀疑符号文件不匹配时,如何确定呢?

  • 如果是用windbg调试,请用 !chksym 模块名
    比如,匹配的时候
     

    不匹配的时候

  • 静态检查---symchk.exe
    例用Windows调试工具集里的工具symchk.exe
    symchk xxxx(模块) /v /s .
    不匹配时输出

     匹配时

  • 静态检查---chkmatch.exe
    从这里下载http://www.debuginfo.com/download/chkmatch.zip
    chkmatch -c <exefile> <pdbfile>
    不匹配时

    匹配时

什么是!dumpheap?

!dumpheap是来自SOS扩展的命令,用于转储托管堆的内容。您可以获得堆上当前活动的所有托管对象的所有地址和一些附加信息。
在WinDbg的最后两个版本中,SOS实际上被PSSCOR取代,它有一个很好的帮助系统。对于大多数命令,您只需键入“!help commandName”,例如,“!help dumpheap”,您将获得关于参数和如何使用的详细帮助。

!dumpheap 参数

  • -stat–只输出堆上所有类型对象的统计摘要、它们的计数和它们自己的大小(不带引用)
  • -nostrings–排除字符串的输出(不使用-stat时)。
  • -gen X–仅输出属于X代的对象,其中X可以具有以下值:对于1.1–0、1、2和3,对于大型对象(大于85Kb的对象,没有其引用)。对于1.0,除了使用-1而不是3。
  • -min X–忽略小于X的对象(其中X是字节数)。
  • -max X–忽略大于X的对象(其中X是字节数)。
  • -mt MethodTable–仅列出具有给定MethodTable的对象。
  • -type type–仅列出类型名为math类型的子字符串的对象。
  • -缓存–将对象保存在内部缓存中以供以后使用(有助于加快速度,而不是重新扫描堆)。
  • -lx–只打印每个堆中的X个项,而不是所有对象。
  • -short–只打印出对象地址。用于与.foreach命令组合使用。
  • -fix START END–使用给定的起始地址和结束地址,只扫描这些地址之间的堆。

注意:如果我没记错的话,-cache、-nostring和-short都是在最近两个版本的SOS(以前是PSSCOR)中添加的新命令,其余命令在大多数版本的SOS中都可以使用相当长的时间。

-short参数

你可以说,第二代的内容是如何打印的。在-short命令之前,你必须运行“!dumpheap-gen2“将输出复制到记事本,解析它,只留下对象地址,然后你就可以手动运行!do对每个地址执行操作,或将.foreach与/f命令一起使用。
现在,使用-short,您只需运行以下命令行:

.foreach ( obj { !dumpheap -gen 2 -short } ) { !do ${obj} }

 

软件 的调试 也称纠错或排错 , 它是孤立并纠正错误的一种技巧性过程 。 软件错误的外部表现形式与内部 原 因之间往往没有 明显 的联系 , 所 出现的差错并非直接就能找 出原 因 。 因此 , 调试 既要对 错误 的性 质及 程序 本身进 行系统的研 究 , 在某种程 度上也要靠直觉与经验 。 到 目前为止 , 调试还 没有 一套经 得起检验 的完 整而 系统 的理论方法 , 排错时所采用的方法和时 间都不能事先确定 . 这样 , 通常认为调试是 困难的 , 是软件开发过 程 中最为艰 巨 的一种脑力劳动 。 本文拟就 调试的方法 、 技术与技 巧进行探讨 .

调试的步骤

诊断错误

或是 系统报 错 , 或是输 出结果与设 想的不 同 , 或是 陷入死循环等 , 都认为程序存在错误 .

确定错误的源发点

发现错 误的地方不一定是错误的源发点 , 应寻找所有与错误有关 的地方 , 从而确定错误的源发点 。 例如程序 :
1 0 F O R I= 1 T O 1 0
20 R E A D A ( I )
30 N E X T I
4 0 D A T A 15 , 1 6 , 2 5 , 27 , 2 8
R U N
O U T O F D A T A 1 N 2 0
错误发生于 2 0 行 , 但与第 4 0 行有关。

改正错误

确定错误及 位置后 , 针对错误 的具 体类 型进行改正 。 在纠错过程 的两方面即确定错误及位置和改 正错误 中 , 第一方面 的工作大 约相当于整个工作的 9 5 % , 为 排 错的关键 。 故本文重点探讨错误的诊断方法与技巧 。

诊断 错误的实验方法

静态调试

静态调试指对程序进行人工书面检查。 静态调试时要仔细阅读程序及其文档 , 经过结构分析 、 功能分析 、 逻辑 分析 、 接 口 分析 、 语 法分析以 及逐行检查 , 以 便找出并改正错误 。 通常 有下 面两种方法 。

  • 检查语法错误
    产生语 法错误 的原因 主要有两 个 , 一个是 键入错误 , 此错误如 同写文章 时的“ 笔误” ; 二是 由于对语法规则 不熟悉 , 如书后的错误 信息 、 各种限制 、 全局变量与局 部变量 、 先左后右 的原则等 , 这些 虽不是 系统的规定 , 但也是语法的一部分 , 应作为专项予 以检 查。
  • 跟踪程序流程
    此时的跟踪程序 流程 , 即将 自己 当做计算机 , 给 定一 组输 入数据后 , 顺序执行每 条语句 , 考察所得结果 . 寻 找错误 . 此方法需 花一定时间 , 但这是 最基本的方法 , 用 其它方法难 以查 出问题时 . 可以试 用此法 。 顺便说一句 , 学习编 程技术的主要途径是读 别人的 程序 , 对 较难懂的地方 , 也只 有跟踪程序才能读懂 , 也 就是常说的阅读能力提高 的途径 。 对程序 的流程图也可采取此方法检查 。 一般提倡应尽可能将 各种错误 消灭在静 态调试 阶段 。

动态调试

动态调试 , 是指实际 上机运行程序进行调试 . 经过静态调试 后 , 仍 留在程序中的错误便都十分隐蔽。 为找 到这些错误 , 首先需捕 获一些与错误有关的线索 . 即进行错误侦察 , 此时需充分利 用计算机系统提供的调试手段。

  • 试通
    源程序上机 运行 , 语 言系统及操 作系统会在程序有故 障时给出信息 , 这些 信息反映 了如下几种故障情况 :
    ①没 有通过 编译 对解释型的高级语言来说 , 如 B A S I C 语言 , 程 序出现语法错误 , 系统便使程序在出错点 中断 , 并指 出错误 的类型 和 位置。 对 编译 型的高能 语言 , 如 P A S C A L 语言程序 , 编 译系统把程序检查一遍后 , 对语法错误会打 印 出一系列的出错 信息 , 根据这些语法出错信息号 , 可在“ 用 户手册 ” 中查 出原因 。
    ②没有通过连 接编辑 连接编 辑阶段的 错误有 : 公 共数据块长度不一致 , 系统 自动按最长 处理 , 但给 出警 告 ; 某个模块名找不到 所需要 的模块 , 如 数据说 明遗漏 , 连接数组元素引用 当函数引用 , 库函数引用 不符合规格说 明; 内存容量 不够 而需要分节等 。 这些 错误 可参照 “ 用 户手 册 ” 予以改正 。
    ③程序的运行过 程因故障而停止 程序因故障而 停止运 行 , 在多数情 况下会给出出错信 息 , 这类信息在“ 用户手册 ” 中都有解释 。
    ④程序只 输出部 分结果 对这 部分结果进行分析 , 可大致 了解程序被执行的逻辑 , 或程序在什么地方被中断 。
    ⑤程序执行 了很 长时间没有结果 这种情况可能 由三个原因造成 : 一是程序本来执行 时间就 很长 ; 二是程序 内有死循环 ; 三是程序运行时使 硬 件系统“ 死锁” 。
  • 调试工具
    错误的位置可以 通 过在程序 中插入调试 语句 , 也可 以使用机 器提供的调试工 具在程序 中的某一点将有 关数据单元的内容或程序 的执 行路径输 出。 不 同的操 作系统或编译程序提供 不同的调 试工 具 。 调试软件一般 有两 种 , 一种是 交互式调 试程序 , 它 使得 程序员和 执行 中的用 户软件 在联 机方式下相 互作用 , 提 供了中断程 序 、 在程序中设置断点 、 显示并改变符 号项 中的变量 、 逐语句的执行程序等特性 。 如 B I M 公司为 P L l / 的 C C ; D E C 公司为 CO B O L 配的 C ID 等 。 另一种是 程序 语言所提 供 的调 试特性 对语言 的 扩充 。 如 P L l / 提 供了 c H E c K 语句 , F O R T R A N 提供 了作为注释或在编译时 作为正 式语 句解释 的特性等 。 此外 , 为了调 试程序 , 常 常使用操 作系统提供的某些实用软件 , 例如文件或 内存 的转储 , 两个文件的比 较程序 等 , 或是利用测试得到 的 信息 。 然而 , 最有效 的调 试工具 似乎是写程序时写到程序中的调试语 句 , 这 样 , 出错区域可 由程序员定位。 调 试语句是一些不影响程序的功能 , 仅 给调试人员提供如下 信息的语 句:
    ✦活动路径
    ✦统计活动次数
    ✦其它有关信息
    常用的调试 语句有 以下几种 :
    ①利用系统 提供的调试命令和语句 如在 A P P L E S O F T 中以下命令与语句常 用 , S T O P 语 句使程序暂 停 , 设置断点 ; C O N T 语句使程序从断 点继续执行下去 ; T R A C E 逐个行跟踪 , 即逐 次显示计算机执行的语句行号 , 给 定一 组调试 数据后可以检查程 序是否按预想的路径执行及执行的结果是否 正确 ; N O T R A C E 命令取消逐行跟 踪。 在 F O X B A s E 中 , 程序执 行到 S U S P E N D 时能把正在执行的程序挂起 , R E S U M E 能使被 挂起的程序 从断点处继 续恢复运行 ; S E T E C H O O F F / O N , 默认值 为 O F F , 若设置为 O N , 则将 每一条执行过的命令在屏幕上显示 , 由此可确切地掌握当 前程 序运行 的进程 , 帮助 查 出产 生 间题的 位置 , S E T S T E P O F F /O N , 默认为 O F F , 当为 O N 时 , 程序会以单 步形式进 行等。
    ②设 置状 态变 量 例 如 , 在 每个 模块中设置一个状态变 量 , 程序进入该 模块时 , 便给该 状态变量一 个特殊值 , 根 据各状态变 量 的值 , 可以判定程序活动的大致路径 。
    ③设置计数器 在每个模块或基本 结构中 , 设置 一个计数器 , 程序 每进入该结构一次 , 便计数一 次。 这样 , 不仅 可以判断 出程序活动的路径 , 而且 当程序中有死循环时 , 用此方法便能很快确定 .
    ④插入打印语句
    打印语句是最 常用的一种调试语句。 它用起来非常 敏捷 , 能产生许多 有用的信息 . 特 别适用于人机对话 或 调试过程 。 关键是断点的位置和打印哪些变量 的值 。 下面介绍打印语句的几种用法 。
    A.回声打印 ( E C H O P R IN T IN G ) “ 回声 ” 打印的特点是“ 读 了就写” 。 它把打印语句放在紧靠读语句之 (或输入语句 )之后 , 或模块入 口 处 , 及 调 用语句之前后 . 可以帮助调试人员检查数据有没有被 正确地翰入或接 口 处信息传递是否正确 。
    B. 追踪打印
    追踪打印是为提供程序执行的路径信息而设置的打印语 句。 这些打印语句通常设置在下述 位置 : . 模块首部或尾部 . 调用语句前后 . 循环结构 内的第一个语句或最后一个语句 . 紧靠循环结构后面第一个语 句 . 分支点之前 . 分支中的第一个语句
    C.抽点打印
    抽点打印就是选择一些可疑点设置打印语句 , 以便打印有关变量的值 。
    D.成组打印子程序
    即集中一组打 印语句写成一个 专用子程序 , 凡是需 要了解情况处就可调用此子程序。 例 : 考 虑到 层、 块结构 的需要 , 可在一层中编写一个打印子程 序。
    8 9 9 9 R E M C 层成组打 印子程序
    90 0 0 P R I N T “ C $ = ” ; C $ ; “ C C $ = ” ; C C $
    9 0 1 0 P R IN T “ C = ” ; C ; “ C C 一 ” ; C C ; “ C l = ” ; C l ; “ C Z = " ; C Z
    9 0 20 R E T U R N
    可在若干地方调用 此子程序 :
    31 4 5 P R IN T “ 检索部分打印” : G O S U B 90 0 0
    3 5 6 5 P R IN T “ 分类部分打印” : G O S U B 9 0 0 0
    36 7 5 P R I N T “ 求和部分打印” : G O S U B 9 0 0 0
    此方法很有用 , 能动态地 了解程序运行情况 。

预埋技术

预埋技术是在程序 中加入“ 潜伏” 的调试语 句。 前面介绍的打印语句和成组打 印子程序 , 在程序完 成后要将 其删去 . 而预埋技术将调试 语句永久地编入程序 , 其是否起作用 由逻辑软 件开头控制 。
例如:

10 IN P U T “ X = ” ; X

20 IF X ( 1 O R X ) = 1 0 T H E N P R IN T “ N O D E F IN I T IO N ”

30 IF X ) = 1 A N D X ( 3 T 圣IE N P R I N T “ Y = ” ; 5一 CO S ( 8 * X )

4 0 IF X ) = 3 A N D X ( 6 T H E N P R I N T “ Y = " ; E X P ( X )
5 0 IF X >= 6 A N D X ( 1 0 T } {E N P R IN T “ Y = ” ; 1+ S Q R ( X 二 1)
60 E N D

在此例中 , 我们只处理了 X e 〔1 , 10 ) 的正常情况 , 但估计到使用 中出现 的变动可能导致 x ( 1 或 x ) 1 0, 提 前将调试语句放 在程序 中。 这样 , 对于任何情况的输入程序都能 适应。 人是健忘 的 , 如果没有这个调试语句 , 将会花费很多时间去查错 。

错误诊断的推理技术

归纳法排错 ( D E B U G G I N G B Y I N D U C T IO N )

其 荃本思想是 逐步减少和改进 假定的过程 。 在查 出错误后 , 要把一切可 能的原 因和假定都提出来 , 利用 错误数据 排除一部分 , 假 定再从其余 假定中估计可能性最大的一个 。 使确 定错误原 因的范围更集 中 , 下一步 或 许就可证明这一改进后的假定 , 或再作其他选择 .

 

 

演绎法排错

其基本思 想是枚举所有可能引起 出错的原 因作为假设 , 然后利用数据逐一排除不可能发 生的原 因与假设 , 将 余下的原 因作为主攻方向。 演绎法过程如下 图所示 :

 

 

回溯法 ( B A C K T R A C KING)

对于小程序 , 这 种技术极为有用 。 从错误 出现之处 出发 , 沿反 向路径进行检查 , 直到找出错误的原因 。 推理是在取得一 定的实验数据的基础 上进行 的 , 推理 得出的假设 , 要靠实验证 明 并取得 新的数据 , 把搜索 范围缩 小。故错误诊断的 实验方法与推理技术应结合使用 , 互相补充 。

错误修改的原则

不要试着改

不要当只 查到 了一些征兆 , 原 因还没有 查清 , 便想试 着改 动某个语句 。 这 种盲 目行 为成功 的概率很 小 。 因 某些错误征兆 的修改并没有治本 。 有时会把 某些新的错 误掺加到程序 中 , 造 成调试 的混乱 。

修改 了一个错误 , 可能还 会有别的错误

一般错误 是密集 的 , 修改了一个错 误后 , 还应检查它的近邻还有没有别的错误或者在程序 中还有无类似 的错误 。

改变源程序代码 , 不要改变目标代码

当调试一个大 系统 , 特别是用 汇编语 言写的系统纠错时 , 不要直接修改目标代码。 否则 , 当程 序重新编译 或重新汇编时 , 错误 还会再现

修改错误的过程将迫使人们暂时回到设计阶段

修改错误是 程序设计的一个重要 内容和形式 。 一般 说来 , 在设计过程中所使用 的各种方法应 能应 用于错 误修改过程 。

修改完毕 . 需进行 回溯测试

因为 :

  • 纠正错 误的概率 不是 10 0 %
  • 纠正错误 时产生新错误 的可能性
  • 修改代 码比 原有的代码更 易出错

在调试.NET应用程序中的转储文件时,有时我们可能会遇到这样的情况:我们希望得到引用RCW对象的System.__ComObject包装器引用的COM对象。
你可能会认为抛弃这个系统。也许你能给出答案,但事实并非如此。

如下例子

Name: System.__ComObject

MethodTable:
79307098EEClass: 790dfa34

Size:
16(0x10) bytes

GC Generation:
2(C:\WINDOWS\assembly\GAC_32\mscorlib\2.0.0.0__b77a5c561934e089\mscorlib.dll)

Fields:

MT Field
Offset Type
VT Attr Value Name
79330740 400018a 4System.Object0 instance 00000000__identity79333178 400027e 8 ...ections.Hashtable 0 instance 00000000 m_ObjectToDataMap

1 引 言

软件规模 日趋庞大 , 软件调试 中 , 发现 、 定位、分析错误的工作量也相应增长 。 因此 , 人们 开发 了 C o d e iV e w 等调试工具以 深 入错 误发 生时的程序执行环 境 , 使效率大增 。 不过对于 下 面的循环结构 ( 以 C 语言为例 )仍有为难之处 :

 

 

假定该循环共执行 1 0 0 0 0 遍 , 第 3 0 0 0 次执行死 机了 , 那么用调试工具判定死机发生在该循环 中很 容易 , 但再进一步分析则不可能 。 因为 , 若 设 断点 于 循 环 内 , 则 每 次循 环 皆被 中断 , 至 3 0 0 0 次运行才能发现错误所在 , 以 后欲 分析错 误也是每 3 0 0 0 次运行方可进入 出错环境一次 , 这绝对无法 容忍。

2 调试方法

在这里笔者介绍一种在调试软件过程中改 进了的方法 , 可解决这个问题 。 对于上面的实例 只需增加几条语句即可 , 如下所示 。 其 中 fp 为 文件 指针 , n u m b e r 是 初 值 为零 的整 型 变 量 ,
d o o n h t in g 为一空 函数 , 它 们都为调试而 设立 。 具体的调试方法是将不设断点的程序先执行一 次 , 然后 阅读 r e c o r d . da t 找 出错 误发 生 时的n u m be r 值 , 再设 br e a k p o in t 为该 n u m be r 值 , 置断点于 d o n o t h i n g o 这 一行上 , 即可使 程序 非常方便地运行到 出错处停住 。

 

这里文件先 用 “ w ” 方 式打开 , 就 自然清 除 了上次执行形成的 r e c o r d . da t 。 在循环中用“ a " 方式将每次循 环 中的 n u m h a r 值等关键参数逐 次记入文件尾 部 。 切记一定要在循环内打开文 件 , 写 入信息 , 再关 闭文件 , 这可保证切实形 成 文件 ; 否则 (在进入循环 前打开 , 结束循环后关 闭) , 一旦循环 内出现死机等严重间题 , 文件就 不能形成 。 对于复杂的循环 , 记录于文件 中的信 息应包含一些除 n u m b e r 外 的其 他重 要参 数 , 既 利于发现错误 ( 参数异常就是出错 , 不必非死 机等重大问题才知出错了 ) , 又有利于了解循环 执行过程 而分析错误 , 因此 , 这些参数选择的好 坏 直接 影响调试效率。 在这个例子 中设 do_mai n _ w o r k 为循环 中的实质所在 , 又 很复 杂 , 其余仅是简 . 单工作 , 则应记录它的参数 ( 假设参 数 1 为整型 , 参数 2 为双精度型 ) 。

n u m b e r 系一附加 变量 , 如循环 中有一 不 断 增大或不断减小的变量可用 , 则也可用该变 量代替 n u m b e r 的作用 。 不过本例适用于 任何 循环 , 则是标准的方法 。 另外 i f 语句中的相等 关系也可用适当的不等关 系取代 , 如本例中用 不小于关 系 , 则 n u m b e r 不小于 b r e a k p o i n t 后 的每一 次循环 中断点有效 。 b r e a k p i o n t 最好不 要用一常量 ( 以免常常修改 ) , 而采用一变量 , 它 可在进入循环 前读入或 由命令行参数传入 , 如 此则程序无须改 动而 可停在循环的任意次数 上 。 b r e a kp o in t 类型 自然与 n u m b e r 或其他替 代者相同 。

3 结 语

这种方法有利于 发现错误 , 以 后 利用调试 工具又极易进入 出错时的环境 , 而且为调试而增加的程 序是固定不 变的 , 故大大提高了效率 。 不过除了死机 、 除零等中断程序运行的错 误一 定发生在 r e c o r d . d a t 的最后 一行记录写入 后外 , 其余错误往往 比较含蓄而要查找一番 , 如 关 键参 数出错 , 则可能需要认真 阅读 r e c o r .d
da t , 对于一些不影响关键参数的小错则可能需 要另 想办法 。 另外发现的可能是表面错误 , 如果 死机 由前面 某次循 环中的错误 埋下祸 根 , 则需 先 由 死 机 处 仔 细 分 析 , 发 现 疑 点 , 再 重 设
b r e a k p o f n t 去分析疑点 , 深挖根源 . 所 以使用该 法虽减小了工作量 , 但软件调试仍是一项艰 巨 的任务 .