本文分享自华为云社区《
Go并发范式 流水线和优雅退出 Pipeline 与 Cancellation
》,作者:张俭。

介绍

Go 的并发原语可以轻松构建流数据管道,从而高效利用 I/O 和多个 CPU。 本文展示了此类pipelines的示例,强调了操作失败时出现的细微之处,并介绍了干净地处理失败的技术。

什么是pipeline?

pipeline在Go中并没有书面的定义,只是众多并发程序中的一种。非正式地,pipeline由一系列stage组成。每个stage是运行着同一个function的协程组。在每个stage,协程们

  • 通过inbound channel从上游获取数据
  • 在data上进行运算,通常会产生新的值
  • 通过outbound channel向下游发送数据

每个Stage都有数个inbound channel和outbound channel,除了第一个和最后一个Stage,分别只有outbound和inbound channel。第一个Stage通常叫做
Source

Producer
。最后一个Stage通常叫做
Sink

Consumer

我们将从一个简单的示例pipeline开始来解释这些想法和技术。 稍后,我们将提供一个更实际的例子。

Squaring numbers 平方数

考虑一个有着三个阶段的流水线。

第一阶段,
gen
,是个将整数列表转换为一个发射列表中整数的channel的函数。
gen
函数启动一个go routine,用来发送channel中的整数,然后当所有的整数都被发出后,将channel关闭:

func gen(nums ...int) <-chan int{out := make(chan int)
go func() {
for _, n :=range nums {out <-n
}
close(
out)
}()
return out}

第二阶段,
sq
从上面的channel中接收数据,返回一个发射对应整数平方数的channel。当inbound channel关闭后,并且这一阶段将所有的value发送到下游后,再将这个outbound channel关闭

func sq(in <-chan int) <-chan int{out := make(chan int)
go func() {
for n := range in{out <- n *n
}
close(
out)
}()
return out}

main函数组织整个pipeline,并且运行最终的stage:从第二个stage中接收数据然后逐个打印,直到channel被关闭

func main() {//Set up the pipeline
    c := gen(2, 3)out :=sq(c)//Consume the output//4
    fmt.Println(<-out)//9
    fmt.Println(<-out)
}

既然sq的inbound channel和outbound channel类型相同,我们可以将其进行任意数量的组合。我们还可以将main函数重写为循环,就像在其他Stage中做的那样一样。

func main() {//Set up the pipeline and consume the output.
    for n := range sq(sq(gen(2, 3))) {
fmt.Println(n)
//16 then 81 }
}

扇入和扇出

许多函数可以从一个channel中获取数据直到channel被关闭,这被叫做扇出。这提供了一种在worker之间分配工作以并行化 CPU 使用和 I/O 的方法。

一个函数可以通过将多个input channel多路复用到同一个channel,当所有的channel关闭时,该多路复用channel才关闭。从而达到从多个input获取数据并处理,直到所有input channel都关闭才停止的效果。这叫做扇入。

我们可以将我们的流水线改为运行两个
sq
,每个都从相同的channel读取数据。我们引入一个新的函数
merge
,来做扇入的工作

func main() {in := gen(2, 3)//Distribute the sq work across two goroutines that both read from in.
    c1 := sq(in)
c2 :
= sq(in)//Consume the merged output from c1 and c2. for n :=range merge(c1, c2) {
fmt.Println(n)
//4 then 9, or 9 then 4 }
}

merge
函数通过对每个channel开启一个协程,把数据拷贝到另一个out channel中,实现将channel列表转换为一个channel的效果。当所有send操作完成后,再将out channel关闭。

向一个已经关闭上的channel发送数据会导致panic,所以保证发送完所有再关闭channel至关重要。sync.WaitGroup提供了一个简单地方式来编排这个同步

func merge(cs ...<-chan int) <-chan int{varwg sync.WaitGroupout := make(chan int)//Start an output goroutine for each input channel in cs. output//copies values from c to out until c is closed, then calls wg.Done
    output := func(c <-chan int) {for n :=range c {out <-n
}
wg.Done()
}
wg.Add(len(cs))
for _, c :=range cs {
go output(c)
}
//Start a goroutine to close out once all the output goroutines are//done. This must start after the wg.Add call. go func() {
wg.Wait()
close(
out)
}()
return out}

短暂的停顿

我们的pipeline函数有这样的模式:

  • 当发送任务结束后,关闭发送output channel
  • 直到input channel关闭前,一直从input channel中接收消息

这个模式下,每个阶段都可以用协程+for循环的模式来书写,保证每个数据发送到下游后再关闭所有协程。

但是在实际的pipeline中,阶段并不总是接收所有来自inbound channel的数据。通常,如果inbound的值出现了错误,pipeline会提前退出。 在任何一种情况下,接收者都不必等待剩余值到达,并且我们希望fast fail(较早阶段的Stage尽早停止后期Stage不需要的值)。

在我们的示例pipeline中,如果一个Stage未能消费所有inbound值,则尝试计算后并发送这些值的 goroutine 将无限期阻塞:

    //Consume the first value from the output.
    out :=merge(c1, c2)
fmt.Println(
<-out) //4 or 9 return //Since we didn't receive the second value from out,//one of the output goroutines is hung attempting to send it. }

这就导致了资源泄漏:协程消耗内存、运行资源,并且在协程栈内的golang堆引用导致垃圾无法回收。协程只能自己退出,不能由垃圾回收机制回收。

即使下游的Stage无法接收所有inbound value,我们也需要把上游的协程退出。如果把上游的协程改为有buffer的,可以解决上面的问题。如果Buffer中还有空间,则发送操作可以立刻完成

c := make(chan int, 2) //buffer size 2
c <- 1  //succeeds immediately
c <- 2  //succeeds immediately
c <- 3  //blocks until another goroutine does <-c and receives 1

当要发送的数目可以在channel创建时知道时,buffer可以简化代码。举个例子,让我们来使用buffer channel,不开辟新的协程来重写
gen
方法:

func gen(nums ...int) <-chan int{out := make(chan int, len(nums))for _, n :=range nums {out <-n
}
close(
out)return out}

在我们的pipeline中,我们就需要在
merge
方法中使用的
channel
添加buffer:

func merge(cs ...<-chan int) <-chan int{varwg sync.WaitGroupout := make(chan int, 1) //enough space for the unread inputs//... 其余的没有变更 ...

尽管上面这个方案修复了阻塞的问题,但它是很差的方案。这里有一个对1的硬编码,这太脆弱了?你真的能预料到有多少个值不能被正常发送吗?一旦两个值不能正常发送,你的协程又阻塞了。

作为替代,我们需要给下游阶段提供一个机制,知会下游阶段,发送者已经停止发送了。

Explicity cancellation 显示取消


main
函数决定不从out处接收所有数据,而是退出时,它必须知会上游阶段的协程放弃接下来的发送。它通过向一个名叫
done
的channel发送数据来完成这个动作。因为发送方有两个,所以 向
done
发送两次数据。

func main() {in := gen(2, 3)//Distribute the sq work across two goroutines that both read from in.
    c1 := sq(in)
c2 :
= sq(in)//Consume the first value from output. done := make(chan struct{}, 2)out :=merge(done, c1, c2)
fmt.Println(
<-out) //4 or 9//Tell the remaining senders we're leaving. done <- struct{}{}
done
<- struct{}{}
}

发送到out channel的发送者把原来的逻辑替换成一个select操作,select或者发送一个数据,抑或从
done
处接收到数据。因为
done
中数据值的类型根本不重要,主要是接收到值这个事件本身很重要,所以
done
channel的类型时
struct {}

output
循环继续在
inbound
channel上执行,所以上游的阶段并没有被阻塞。(我们稍后会讨论如何让循环迅速返回。)

func merge(done <-chan struct{}, cs ...<-chan int) <-chan int{varwg sync.WaitGroupout := make(chan int)//Start an output goroutine for each input channel in cs.  output//copies values from c to out until c is closed or it receives a value//from done, then output calls wg.Done.
    output := func(c <-chan int) {for n :=range c {select{case out <-n:case <-done:
}
}
wg.Done()
}
//... the rest is unchanged ...

这个方法有一个问题:每一个下游接收者都需要知道可能阻塞的上游发送者总数。维护它们的数目,是一个琐碎又容易出错的事情。

我们需要一个机制来让不可知的、无界的发送协程来停止发送到下游的值。在Go,我们可以通过关闭channel来完成这件事,因为在已经关闭的channel上执行receive操作,会立刻返回该元素的零值。

这说明
main
函数可以简单地通过关闭
done
channel来让所有的发送者不阻塞。关闭操作是一个高效的广播。我们把pipeline中的每个函数都接受
done
作为参数,并把
done
在defer语句中关闭, 这样,如果在
main
函数中返回,都会通知pipeline中的阶段退出。

func main() {//Set up a done channel that's shared by the whole pipeline,//and close that channel when this pipeline exits, as a signal//for all the goroutines we started to exit.
    done := make(chan struct{})
defer close(done)
in := gen(done, 2, 3)//Distribute the sq work across two goroutines that both read from in. c1 := sq(done, in)
c2 :
= sq(done, in)//Consume the first value from output. out :=merge(done, c1, c2)
fmt.Println(
<-out) //4 or 9//done will be closed by the deferred call. }

现在当
done
channel关闭后,接收到close信息的阶段,都可以直接退出了。
merge
函数中的
outout
协程可以不从
inbound
channel中取数据直接退出,因为它知道,上游的发送sq,接收到close信息,也会直接退出。
output
通过defer语句来保证
wg.Done()
一定被调用。(译者注:来关闭out channel)

func merge(done <-chan struct{}, cs ...<-chan int) <-chan int{varwg sync.WaitGroupout := make(chan int)//Start an output goroutine for each input channel in cs.  output//copies values from c to out until c or done is closed, then calls//wg.Done.
    output := func(c <-chan int) {
defer wg.Done()
for n :=range c {select{case out <-n:case <-done:return}
}
}
//... the rest is unchanged ...

相似的,当接收到close信号时,
sq
函数也可以立刻返回。
sq
通过
defer
语句来保证
out
channel一定被关闭。

这是给构建pipeline的一些指导:

  • 当所有的发送操作完成后,关闭outbound channel
  • 如果发送发不阻塞,或是channel没有关闭,接收者会一直从channel中接收数据

Pipeline通过如下两个方式来解除发送者的阻塞

  • 确保channel的buffer足够大
  • 显示知会发送者,接收者已经放弃接收

Digesting a tree 对树进行摘要

让我们来考虑一个更实际的pipeline

MD5 是一种消息摘要算法,可用作文件校验和。 命令行实用程序 md5sum 打印文件列表的摘要值。

% md5sum *.go
d47c2bbc28298ca9befdfbc5d3aa4e65 bounded.go
ee869afd31f83cbb2d10ee81b2b831dc parallel.go
b88175e65fdcbc01ac08aaf1fd9b5e96 serial.go

我们的示例程序类似于 md5sum,但将单个目录作为参数并打印该目录下每个常规文件的摘要值,按路径名排序。

%go run serial.go .
d47c2bbc28298ca9befdfbc5d3aa4e65 bounded.go
ee869afd31f83cbb2d10ee81b2b831dc parallel.go
b88175e65fdcbc01ac08aaf1fd9b5e96 serial.go

我们的主函数调
MD5All
这个辅助函数,返回路径名和摘要值的map,
main
函数再将它们排序打印

func main() {//Calculate the MD5 sum of all files under the specified directory,//then print the results sorted by path name.
    m, err := MD5All(os.Args[1])if err !=nil {
fmt.Println(err)
return}var paths []string for path :=range m {
paths
=append(paths, path)
}
sort.Strings(paths)
for _, path :=range paths {
fmt.Printf(
"%x %s\n", m[path], path)
}
}

MD5All
函数是我们讨论的重点。在如下串行化的实现中,没有使用并发技术,只是简单对文件进行了遍历

//MD5All reads all the files in the file tree rooted at root and returns a map//from file path to the MD5 sum of the file's contents.  If the directory walk//fails or any read operation fails, MD5All returns an error.
func MD5All(root string) (map[string][md5.Size]byte, error) {
m :
= make(map[string][md5.Size]byte)
err :
= filepath.Walk(root, func(path string, info os.FileInfo, err error) error {if err !=nil {returnerr
}
if !info.Mode().IsRegular() {returnnil
}
data, err :
=ioutil.ReadFile(path)if err !=nil {returnerr
}
m[path]
=md5.Sum(data)returnnil
})
if err !=nil {returnnil, err
}
returnm, nil
}

并行计算摘要

在并行的解法中,我们将
MD5All
分割为两个阶段的pipeline。第一个阶段,
sumFiles
,遍历文件树,针对每个文件,在新的协程中计算摘要,然后把结果发送到channel中,这是result的类型

type result struct{
path
stringsum [md5.Size]byteerr error
}

sumFiles
返回两个channel:一个是result channel,另一个是
filepath.Walk
中产生的错误。
walk
函数针对每个文件启动一个新的协程来处理,然后检查
done
channel。如果
done
已经被关闭,
walk
函数会立刻停止:

func sumFiles(done <-chan struct{}, root string) (<-chan result, <-chan error) {//For each regular file, start a goroutine that sums the file and//sends the result on c.//Send the result of the walk on errc.
    c :=make(chan result)
errc :
= make(chan error, 1)
go func() {
varwg sync.WaitGroup//If any error occurred, walk method will return err := filepath.Walk(root, func(path string, info fs.FileInfo, err error) error {if err !=nil {returnerr
}
if !info.Mode().IsRegular() {returnnil
}
wg.Add(
1)
go func() {
data, err :
=ioutil.ReadFile(path)select{case c <-result{
path: path,
sum: md5.Sum(data),
err: err,
}:
case <-done:
}
wg.Done()
}()
//Abort the walk if done is closed. select{case <-done:return errors.New("walk canceled")default:returnnil
}
})
//Walk has returned, so all calls to wg.Add are done.//Start a goroutine to close c once all the sends are done.//No select needed here, since errc is buffered. errc <-err
}()
returnc, errc
}

MD5All

c
中接收到摘要数据。当发生错误时,
MD5All
会迅速返回,通过
defer
语句来关闭
done
channel

func MD5All(root string) (map[string][md5.Size]byte, error) {//MD5All closes the done channel when it returns; it may do so before//receiving all the values from c and errc.
    done := make(chan struct{})
defer close(done)

c, errc :
=sumFiles(done, root)

m :
= make(map[string][md5.Size]byte)for r :=range c {if r.err !=nil {returnnil, r.err
}
m[r.path]
=r.sum
}
if err := <-errc; err !=nil {returnnil, err
}
returnm, nil
}

有界的并行

parallel.go 中的 MD5All 实现为每个文件启动一个新的 goroutine。 在包含许多大文件的目录中,这可能会分配比机器上可用的内存更多的内存。

我们可以通过限制并行读取的文件数量来限制这些分配。 在新的解决方式中,我们通过创建固定数量的 goroutine 来读取文件来做到这一点。 我们的pipeline现在分为三个阶段:遍历树、读取并计算文件摘要以及收集摘要。

第一阶段 walkFiles 发射出文件树中常规文件的路径:

func walkFiles(done <-chan struct{}, root string) (<-chan string, <-chan error) {
paths :
= make(chan string)
errc :
= make(chan error, 1)
go func() {
//Close the paths channel after Walk returns. defer close(paths)//No select needed for this send, since errc is buffered. errc <- filepath.Walk(root, func(path string, info os.FileInfo, err error) error {if err !=nil {returnerr
}
if !info.Mode().IsRegular() {returnnil
}
select{case paths <-path:case <-done:return errors.New("walk canceled")
}
returnnil
})
}()
returnpaths, errc
}

第二阶段启动固定数量的协程来计算文件摘要,然后发送到c channel中

func digester(done <-chan struct{}, paths <-chan string, c chan<-result) {for path :=range paths {
data, err :
=ioutil.ReadFile(path)select{case c <-result{path, md5.Sum(data), err}:case <-done:return}
}
}

和之前的示例不同,因为多个协程都在共享channel上发送数据,
digester
函数并没有关闭output channel。作为替代,当所有的digesters跑完之后,
MD5All
会关闭channel

    //Start a fixed number of goroutines to read and digest files.
    c :=make(chan result)varwg sync.WaitGroupconst numDigesters = 20wg.Add(numDigesters)for i := 0; i < numDigesters; i++{
go func() {
digester(done, paths, c)
wg.Done()
}()
}
go func() {
wg.Wait()
close(c)
}()

这里也可以针对每个digester开启独立的channel,不过到时候就要对channel进行扇入处理。

最终阶段从
c
中取得所有结果,并且检查errc中的错误。此检查不能更早发生,因为在此之前,walkFiles 可能会阻塞:

(译者注:要保证检查errc的错误,发生在filePath.Walk启动后,
done
不会再次发送了,协程就不会退出)

   m := make(map[string][md5.Size]byte)for r :=range c {if r.err !=nil {returnnil, r.err
}
m[r.path]
=r.sum
}
//Check whether the Walk failed. if err := <-errc; err !=nil {returnnil, err
}
returnm, nil
}

总结

本文介绍了在 Go 中构建流数据pipeline的技术。 处理此类pipeline中的故障很棘手,因为pipeline中的每个阶段可能会阻止尝试向下游发送值,并且下游阶段可能不再关心传入的数据。 我们展示了关闭通道如何向管道启动的所有 goroutine 广播“done”信号,并定义了正确构建管道的指南。

点击关注,第一时间了解华为云新鲜技术~

标签: none

添加新评论