你要的AI Agent工具都在这里
只有让LLM(大模型)学会使用工具,才能做出一系列实用的AI Agent,才能发挥出LLM真正的实力。本篇,我们让AI Agent使用更多的工具,比如:外部搜索、分析CSV、文生图、执行代码等。
1. 使用工具的必要性
LLM(大模型)如果没有使用工具的能力,那就相当于一个有着聪明大脑 但四肢僵硬的
渐冻人
,什么事儿也做不了。人类之所以区别于动物,正是因为学会了使用工具。因此,赋予LLM使用工具的能力至关重要。
我们需要 LLM去帮助执行各种任务。而Tool(工具)就是LLM 在执行任务过程中,能够调用的外部能力。比如:需要检索外部资料时,可以调用检索工具;需要执行一段代码时,可以调用自定义函数去执行。
2. LangChain的Tool规范
所有的工具肯定要遵守一套规范,才能让LLM随意调用。为此,LangChain 抽象出一个
Tool 层
,只要是遵守这套规范的函数就是
Tool
对象,就可以被 LLM调用。
2.1. Tool规范
Tool的规范也简单,只要有三个属性就行:
name
、
description
和
function
。
- name:工具的名称。
- description:对工具的功能描述,后续这个描述文本会添加到Prompt(提示词)中,LLM 将根据description来决定是否调用该工具。
- function:此工具实际运行的函数。
只要遵守这个规范就行,使用形式可以有多种,下文的实践代码会介绍到。
2.2. Agent使用工具的流程
让AI Agent使用工具,需要定义
Agent
和
AgentExecutor
。
AgentExecutor
维护了
Tool.name
到
Tool
的
Map
结构。
LLM根据Prompt(包含了
Tool
的描述) 和 用户的问题,判断是否需要调用工具,确定某个工具后,在根据
Tool
的名称 和 调用参数,到映射
Map
中获找
Tool
实例,找到之后调用
Tool
实例的
function
。
3. 如何使用各种Tool
自定义Tool
只需要遵守以上规范就可以,下面以几个常用的工具做示例。
下文有些工具用到了
toolkits
。
toolkits
是
LangChain提供的工具包,旨在简化使用工具的成本
,
toolkits
里提供了丰富的工具,还在不断叠加,大部分的工具都可以在里面找到。
3.1. 外部搜索
使用外部搜索工具。本文使用的是
serpapi
,
serpapi
集成了Google、百度等多家搜索引擎,通过api的形式调用,非常方便。
官网地址:
https://serpapi.com/
。可以自行注册,有一些免费额度。外部搜索工具定义如下:
# 1. 使用@tool装饰器,定义搜索工具
@tool
def search(query: str) -> str:
"""只有在需要了解实时信息 或 不知道的事情的时候 才会使用这个工具,需要传入要搜索的内容。"""
serp = SerpAPIWrapper()
result = serp.run(query)
return result
3.2. 文生图
文生图工具是使用LangChain社区提供的
DallEAPIWrapper
类,本文使用OpenAI的图片生成模型
Dall-E-3
,具体代码如下:
# 2. 使用Tool工具类,定义图片生成工具
dalle_image_generator = Tool(
name="基于OpenAI Dall-E-3的图片生成器",
func=DallEAPIWrapper(model="dall-e-3").run,
description="OpenAI DALL-E API 的包装器。当你需要根据 描述的文本 生成图像时 使用此工具,需要传入 对于图像的描述。",
)
这里的
DallEAPIWrapper(model="dall-e-3").run
方法就是个函数,实际是去调用了OpenAI的接口。
3.3. 代码执行器
代码执行器工具,可以执行代码 或者 根据自然语言生成代码。主要使用LangChain提供的
PythonREPLTool
和 LangChain提供的
toolkits
。
比如
create_python_agent
就简化了创建Python解释器工具的过程。代码如下:
# 3. 使用toolkit,定义执行Python代码工具
python_agent_executor = create_python_agent(
llm=model,
tool=PythonREPLTool(),
verbose=True,
agent_executor_kwargs={"handle_parsing_errors": True},
)
3.4. 分析CSV
CSV工具,用来分析csv文件。依旧是使用
toolkits
工具包里的
create_csv_agent
函数快出创建工具。代码如下:
# 4. 使用toolkit,定义分析CSV文件工具
csv_agent_executor = create_csv_agent(
llm=model,
path="course_price.csv",
verbose=True,
agent_executor_kwargs={"handle_parsing_errors": True},
allow_dangerous_code=True,
)
3.5. 完整代码
上面介绍了AI Agent的常用工具,定义好工具之后,在把工具放入到工具集中,最后在定义Agent 和 AgentExecutor就算完成了。短短几十行代码,就可以让LLM使用这么多工具了。
完整代码如下:
import os
from langchain import hub
from langchain_openai import ChatOpenAI
from langchain.agents import create_structured_chat_agent, AgentExecutor, Tool
from langchain.tools import BaseTool, StructuredTool, tool
from langchain_experimental.agents.agent_toolkits import (
create_python_agent,
create_csv_agent,
)
from langchain_community.utilities import SerpAPIWrapper
from langchain_experimental.tools import PythonREPLTool
from langchain_community.utilities.dalle_image_generator import DallEAPIWrapper
# 需要先安装serpapi, pip install serpapi, 还需要到 https://serpapi.com/ 去注册账号
# SERPAPI_API_KEY 和 OPENAI 相关密钥,注册到环境变量
os.environ["SERPAPI_API_KEY"] = (
"9dd2b2ee429ed996c75c1daf7412df16336axxxxxxxxxxxxxxx"
)
os.environ["OPENAI_API_KEY"] = "sk-a3rrW46OOxLBv9hdfQPBKFZtY7xxxxxxxxxxxxxxxx"
os.environ["OPENAI_API_BASE"] = "https://api.302.ai/v1"
model = ChatOpenAI(model_name="gpt-3.5-turbo")
# 基于reAct机制的Prompt模板
prompt = hub.pull("hwchase17/structured-chat-agent")
# 各种方式定义工具
# 1. 使用@tool装饰器,定义搜索工具
@tool
def search(query: str) -> str:
"""只有在需要了解实时信息 或 不知道的事情的时候 才会使用这个工具,需要传入要搜索的内容。"""
serp = SerpAPIWrapper()
result = serp.run(query)
return result
# 2. 使用Tool工具类,定义图片生成工具
dalle_image_generator = Tool(
name="基于OpenAI Dall-E-3的图片生成器",
func=DallEAPIWrapper(model="dall-e-3").run,
description="OpenAI DALL-E API 的包装器。当你需要根据 描述的文本 生成图像时 使用此工具,需要传入 对于图像的描述。",
)
# 3. 使用toolkit,定义执行Python代码工具
python_agent_executor = create_python_agent(
llm=model,
tool=PythonREPLTool(),
verbose=True,
agent_executor_kwargs={"handle_parsing_errors": True},
)
# 4. 使用toolkit,定义分析CSV文件工具
csv_agent_executor = create_csv_agent(
llm=model,
path="course_price.csv",
verbose=True,
agent_executor_kwargs={"handle_parsing_errors": True},
allow_dangerous_code=True,
)
# 定义工具集合
tool_list = [
search,
dalle_image_generator,
Tool(
name="Python代码工具",
description="""
当你需要借助Python解释器时,使用这个工具。
比如当你需要执行python代码时,
或者,当你想根据自然语言的描述生成对应的代码时,让它生成Python代码,并返回代码执行的结果。
""",
func=python_agent_executor.invoke,
),
Tool(
name="CSV分析工具",
description="""
当你需要回答有关course_price.csv文件的问题时,使用这个工具。
它接受完整的问题作为输入,在使用Pandas库计算后,返回答案。
""",
func=csv_agent_executor.invoke,
),
]
# 将工具丢给Agent
agent = create_structured_chat_agent(
llm=model,
tools=tool_list,
prompt=prompt
)
# 定义AgentExecutor
agent_executor = AgentExecutor.from_agent_and_tools(
agent=agent,
tools=tool_list,
verbose=True, # 打印详细的 选择工具的过程 和 reAct的分析过程
handle_parsing_errors=True
)
# 不会使用工具
agent_executor.invoke({"input": "你是谁?"})
# 使用查询工具
# agent_executor.invoke({"input": "南京今天的温度是多少摄氏度?现在外面下雨吗?"})
# 使用Python代码工具
# agent_executor.invoke(
# {
# "input": """
# 帮我执行```号里的python代码,
# ```python
# def add(a,b):
# return a+b
# print("hello world : ", add(100,200))
# ```
# """
# }
# )
# 使用图片生成工具
# agent_executor.invoke(
# {
# "input": "帮我生成一副图片,图片描述如下:一个非常忙碌的中国高中生在准备中国的高考,夜已经很深了,旁边他的妈妈一边看书一边在陪伴他,窗外是模糊的霓虹灯。"
# }
# )
# 使用CSV分析工具
# agent_executor.invoke({"input": "course_price数据集里,一共有哪几个城市?用中文回答"})
一起看下使用工具后,reAct的整个过程。
以上代码经过完整调试,更换下openai和serpapi的密钥即可直接运行,如果遇到问题可以
关注公众号
给我留言。
4. 总结
本文主要聊了AI Agent的工具规范,以及常用工具。AI Agent只有借助工具才能发挥威力。
=====>>>>>>
关于我
<<<<<<=====
本篇完结!欢迎点赞 关注 收藏!!!