Funcion Calling介绍

函数调用允许您将模型如gpt-4o与外部工具和系统连接起来。这对于许多事情都很有用,比如为AI助手赋能,或者在你的应用程序与模型之间建立深度集成。

如果您了解或者使用过Semantic Kernel可能会发现除了OpenAI支持Function Calling的模型之外,自动函数调用好像并不好用,国产大模型几乎都不能使用,由于想解决这个问题,在GitHub上找到了一个大佬的方法。

GitHub地址:
https://github.com/Jenscaasen/UniversalLLMFunctionCaller

大佬是通过提示工程与Semantic Kernel中调用本地函数的原理来做的,我看了大佬的代码,将提示词改为了中文,可能会更适用于国产大模型。

之前写了一篇文章:
如何让其他模型也能在SemanticKernel中调用本地函数
介绍了这个方法。

但是当时自己并没有开源项目,感兴趣的朋友,没有办法快速地上手体验,只能自己重新来一遍,现在已将这部分内容集成到我的开源项目SimpleRAG中,感兴趣的朋友只需填入自己的API Key即可快速体验,也可以方便地查看代码了。

GitHub地址:
https://github.com/Ming-jiayou/SimpleRAG

一种通用的Function Calling方法

在开始介绍之前,先看一下效果:

对比一下不使用FunctionCalling的效果:

image-20240828162455519

再来一个示例:

对比不使用Function Calling的效果:

image-20240828162754671

具体代码可在GitHub中查看,这里重点介绍一下实现的过程。

这里以Qwen2-7B-Instruct为例。

首先创建一个Kernel:

image-20240828163952619

在Kernel中导入插件:

image-20240828164048682

以上只是用于测试的模拟函数。

只需这样写即可:

image-20240828165221419

现在探究一下里面的过程。

首先将插件转化为文本:

image-20240828165354209

image-20240828165413278

在对话历史中加入示例:

image-20240828165513048

image-20240828165557673

在对话历史中加入一个指令:

image-20240828165704135

image-20240828165801213

将所有可用的函数嵌入到这个Prompt中了,如下所示:

image-20240828165901365

将指令加入到对话历史中了,如下所示:

image-20240828170031287

让LLM根据任务选择应该先调用哪个函数或者不用调用函数:

image-20240828170139513

LLM返回完成这个任务需要调用的函数:

image-20240828170317084

验证这个函数:

image-20240828170348135

调用插件中的函数:

image-20240828170514946

image-20240828170607398

image-20240828170626711

第一个函数返回的结果:

image-20240828170658135

再向LLM发送请求,现在该调用哪个函数,LLM的返回如下所示:

image-20240828170756097

同样执行插件中的第二个函数:

image-20240828170846964

第二个函数的返回:

image-20240828170917273

然后再向LLM发送请求:

image-20240828171024714

调用的函数名为Finished,表示流程已完成,可以跳出来了,如下所示:

image-20240828171128972

获得了最后的信息:

image-20240828171224711

结果如下所示:

image-20240828171253353

以上就是这个方法的大概流程,具体实现可以看GitHub开源的代码。

经过测试这种方法可用的LLM

平台 可用模型
硅基流动 Llama-3.1-405/70/8B、Llama-3-70/8B-Instruct、DeepSeek-V2-Chat、deepseek-llm-67b-chat、Qwen2-72/57/7/1.5B-Instruct、Qwen2-57B-A14B-Instruct、Qwen1.5-110/32/14B-Chat、Qwen2-Math-72B-Instruct、Yi-1.5-34/9/6B-Chat-16K、internlm2_5-20/7b-chat
讯飞星火 Spark Lite、Spark Pro-128K、Spark Max、Spark4.0 Ultra
零一万物 yi-large、yi-medium、yi-spark、yi-large-rag、yi-large-fc、yi-large-turbo
月之暗面 moonshot-v1-8k、moonshot-v1-32k、moonshot-v1-128k
智谱AI glm-4-0520、glm-4、glm-4-air、glm-4-airx、glm-4-flash、glm-4v、glm-3-turbo
DeepSeek deepseek-chat、deepseek-coder
阶跃星辰 step-1-8k、step-1-32k、step-1-128k、step-2-16k-nightly、step-1-flash
Minimax abab6.5s-chat、abab5.5-chat
阿里云百炼 qwen-max、qwen2-math-72b-instruct、qwen-max-0428、qwen2-72b-instruct、qwen2-57b-a14b-instruct、qwen2-7b-instruct

以上不一定完备,还有一些模型没测,欢迎大家继续补充。

标签: none

添加新评论