最近在复现 PPO 跑 MiniGrid,记录一下…

这里跑的环境是 Empty-5x5 和 8x8,都是简单环境,主要验证 PPO 实现是否正确。

01 Proximal policy Optimization(PPO)

(参考:
知乎 | Proximal Policy Optimization (PPO) 算法理解:从策略梯度开始

首先,
策略梯度方法
的梯度形式是

\[\nabla_\theta J(\theta)\approx
\frac1n \sum_{i=0}^{n-1} R(\tau_i)
\sum_{t=0}^{T-1} \nabla_\theta \log \pi_\theta(a_t|s_t)
\tag1
\]

然而,传统策略梯度方法容易一步走的太多,以至于越过了中间比较好的点(在参考知乎博客里称为 overshooting)。一个直观的想法是限制策略每次不要更新太多,比如去约束 新策略 旧策略之间的 KL 散度(公式是 plog(p/q)):

\[D_{KL}(\pi_\theta | \pi_{\theta+\Delta \theta}) = \mathbb E_{s,a}
\pi_\theta(a|s)\log\frac{\pi_\theta(a|s)}{\pi_{\theta+\Delta \theta}(a|s)} \le \epsilon
\tag2
\]

我们把这个约束进行拉格朗日松弛,将它变成一个惩罚项:

\[\Delta\theta^* = \arg\max_{\Delta\theta} J(\theta+\Delta\theta) -
\lambda [D_{KL}(\pi_\theta | \pi_{\theta+\Delta \theta})-\epsilon]
\tag3
\]

然后再使用一些数学近似技巧,可以得到自然策略梯度(NPG)算法。

NPG 算法貌似还有种种问题,比如 KL 散度的约束太紧,导致每次更新后的策略性能没有提升。我们希望每次策略更新后都带来性能提升,因此计算 新策略 旧策略之间 预期回报的差异。这里采用计算 advantage 的方式:

\[J(\pi_{\theta+\Delta\theta})=J(\pi_{\theta})+\mathbb E_{\tau\sim\pi_{\theta+\Delta\theta}}\sum_{t=0}^\infty
\gamma^tA^{\pi_{\theta}}(s_t,a_t)
\tag{4}
\]

其中优势函数(advantage)的定义是:

\[A^{\pi_{\theta}}(s_t,a_t)=\mathbb E(Q^{\pi_{\theta}}(s_t,a_t)-V^{\pi_{\theta}}(s_t))
\tag{5}
\]

在公式 (4) 中,我们计算的 advantage 是在 新策略 的期望下的。但是,在新策略下蒙特卡洛采样(rollout)来算 advantage 期望太麻烦了,因此我们在原策略下 rollout,并进行 importance sampling,假装计算的是新策略下的 advantage。这个 advantage 被称为替代优势(surrogate advantage):

\[\mathcal{L}_{\pi_{\theta}}\left(\pi_{\theta+\Delta\theta}\right) =
J\left(\pi_{\theta+\Delta\theta}\right)-J\left(\pi_{\theta}\right)\approx E_{s\sim\rho_{\pi\theta}}\frac{\pi_{\theta+\Delta\theta}(a\mid s)}{\pi_{\theta}(a\mid s)} A^{\pi_{\theta}}(s, a)
\tag6
\]

所产生的近似误差,貌似可以用两种策略之间最坏情况的 KL 散度表示:

\[J(\pi_{\theta+\Delta\theta})-J(\pi_{\theta})\geq\mathcal{L}_{\pi\theta}(\pi_{\theta+\Delta\theta})-CD_{KL}^{\max}(\pi_{\theta}||\pi_{\theta+\Delta\theta})
\tag7
\]

其中 C 是一个常数。这貌似就是 TRPO 的单调改进定理,即,如果我们改进下限 RHS,我们也会将目标 LHS 改进至少相同的量。

基于 TRPO 算法,我们可以得到 PPO 算法。PPO Penalty 跟 TRPO 比较相近:

\[\Delta\theta^{*}=\underset{\Delta\theta}{\text{argmax}}
\Big[\mathcal{L}_{\theta+\Delta\theta}(\theta+\Delta\theta)-\beta\cdot \mathcal{D}_{KL}(\pi_{\theta}\parallel\pi_{\theta+\Delta\theta})\Big]
\tag 8
\]

其中,KL 散度惩罚的 β 是启发式确定的:PPO 会设置一个目标散度
\(\delta\)
,如果最终更新的散度超过目标散度的 1.5 倍,则下一次迭代我们将加倍 β 来加重惩罚。相反,如果更新太小,我们将 β 减半,从而扩大信任域。

接下来是 PPO Clip,这貌似是目前最常用的 PPO。PPO Penalty 用 β 来惩罚策略变化,而 PPO Clip 与此不同,直接限制策略可以改变的范围。我们重新定义 surrogate advantage:

\[\begin{aligned}
\mathcal{L}_{\pi_{\theta}}^{CLIP}(\pi_{\theta_{k}}) = \mathbb E_{\tau\sim\pi_{\theta}}\bigg[\sum_{t=0}^{T}
\min\Big( & \rho_{t}(\pi_{\theta}, \pi_{\theta_{k}})A_{t}^{\pi_{\theta_{k}}},
\\
& \text{clip} (\rho_{t}(\pi_{\theta},\pi_{\theta_{k}}), 1-\epsilon, 1+\epsilon) A_{t}^{\pi_{\theta_{k}}}
\Big)\bigg]
\end{aligned}
\tag 9
\]

其中,
\(\rho_{t}\)
为重要性采样的 ratio:

\[\rho_{t}(\theta)=\frac{\pi_{\theta}(a_{t}\mid s_{t})}{\pi_{\theta_{k}}(a_{t}\mid s_{t})}
\tag{10}
\]

公式 (9) 中,min 括号里的第一项是 ratio 和 advantage 相乘,代表新策略下的 advantage;min 括号里的第二项是对 ration 进行的 clip 与 advantage 的相乘。这个 min 貌似可以限制策略变化不要太大。

02 如何复现 PPO(参考 stable baselines3 和 clean RL)

代码主要结构如下,以 stable baselines3 为例:(仅保留主要结构,相当于伪代码,不保证正确性)

import torch
import torch.nn.functional as F
import numpy as np

# 1. collect rollout
self.policy.eval()
rollout_buffer.reset()
while not done:
    actions, values, log_probs = self.policy(self._last_obs)
    new_obs, rewards, dones, infos = env.step(clipped_actions)
    rollout_buffer.add(
        self._last_obs, actions, rewards,
        self._last_episode_starts, values, log_probs,
    )
    self._last_obs = new_obs
    self._last_episode_starts = dones

with torch.no_grad():
    # Compute value for the last timestep
    values = self.policy.predict_values(obs_as_tensor(new_obs, self.device)) 

rollout_buffer.compute_returns_and_advantage(last_values=values, dones=dones)


# 2. policy optimization
for rollout_data in self.rollout_buffer.get(self.batch_size):
    actions = rollout_data.actions
    values, log_prob, entropy = self.policy.evaluate_actions(rollout_data.observations, actions)
    advantages = rollout_data.advantages
    # Normalize advantage
    if self.normalize_advantage and len(advantages) > 1:
        advantages = (advantages - advantages.mean()) / (advantages.std() + 1e-8)

    # ratio between old and new policy, should be one at the first iteration
    ratio = torch.exp(log_prob - rollout_data.old_log_prob)

    # clipped surrogate loss
    policy_loss_1 = advantages * ratio
    policy_loss_2 = advantages * torch.clamp(ratio, 1 - clip_range, 1 + clip_range)
    policy_loss = -torch.min(policy_loss_1, policy_loss_2).mean()

    # Value loss using the TD(gae_lambda) target
    value_loss = F.mse_loss(rollout_data.returns, values_pred)

    # Entropy loss favor exploration
    entropy_loss = -torch.mean(entropy)

    loss = policy_loss + self.ent_coef * entropy_loss + self.vf_coef * value_loss

    # Optimization step
    self.policy.optimizer.zero_grad()
    loss.backward()
    # Clip grad norm
    torch.nn.utils.clip_grad_norm_(self.policy.parameters(), self.max_grad_norm)
    self.policy.optimizer.step()

大致流程:收集当前策略的 rollout → 计算 advantage → 策略优化。

计算 advantage 是由 rollout_buffer.compute_returns_and_advantage 函数实现的:

rb = rollout_buffer
last_gae_lam = 0
for step in reversed(range(buffer_size)):
    if step == buffer_size - 1:
        next_non_terminal = 1.0 - dones.astype(np.float32)
        next_values = last_values
    else:
        next_non_terminal = 1.0 - rb.episode_starts[step + 1]
        next_values = rb.values[step + 1]
    delta = rb.rewards[step] + gamma * next_values * next_non_terminal - rb.values[step]  # (1)
    last_gae_lam = delta + gamma * gae_lambda * next_non_terminal * last_gae_lam  # (2)
    rb.advantages[step] = last_gae_lam
rb.returns = rb.advantages + rb.values

其中,

  • (1) 行通过类似于 TD error 的形式(A = r + γV(s') - V(s)),计算当前 t 时刻的 advantage;
  • (2) 行则是把 t+1 时刻的 advantage 乘 gamma 和 gae_lambda 传递过来。

03 记录一些踩坑经历

  1. PPO 在收集 rollout 的时候,要在分布里采样,而非采用 argmax 动作,否则没有 exploration。(PPO 在分布里采样 action,这样来保证探索,而非使用 epsilon greedy 等机制;听说 epsilon greedy 机制是 value-based 方法用的)
  2. 如果 policy 网络里有(比如说)batch norm,rollout 时应该把 policy 开 eval 模式,这样就不会出错。
  3. (但是,不要加 batch norm,加 batch norm 性能就不好了。听说 RL 不能加 batch norm)
  4. minigrid 简单环境,RNN 加不加貌似都可以(?)
  5. 在算 entropy loss 的时候,要用真 entropy,从 Categorical 分布里得到的 entropy;不要用 -logprob 近似的,不然会导致策略分布 熵变得很小 炸掉。



标签: none

添加新评论