本文是OFDM系统的不同QAM调制阶数的误码率与误比特率仿真,仅考虑在高斯白噪声信道下的情景,着重分析不同信噪比下的误码(符号)率性能曲线,不关心具体的调制与解调方案,仿真结果与理论的误码率曲线进行了对比。

考虑一个简单的OFDM系统,每个频域子载波承载一个QAM调制符号,在经过不同信噪比白噪声信道之后,每个QAM调制符号的解调性能如何,每个符号对应的比特解码性能如何?理论的误码性能如何?

  1. 代码
    clc;close all;clear
    
    %% Seting parameters
    EbN0_list = 0:1:10;
    Q_order_list = 2:2:10;
    loopNumber = 10;
    fprintf('Qm\t EbN0 \t \t EsN0 \t \t SNR_Cal \t \t ser \t\t ser_theory\t\t\t ber\t\t nloop \t\t \n');
    for iQorder = 1 : length(Q_order_list)
    for iEbN0 = 1 : length(EbN0_list)
    
    %% Frame structure
    N_Frame = 10;
    N_Symbol = 14;
    N_RB = 106;
    N_SC_perRB = 12;
    N_SC = N_RB * N_SC_perRB;
    N_Ant = 1;
    N_fft_order = floor(log2(N_RB * N_SC_perRB));
    N_fft = 2^(N_fft_order+1);
    N_cp = N_fft/8;
    EbN0 = EbN0_list(iEbN0);
    
    %% Modulation
    Q_order = Q_order_list(iQorder);
    Qm = 2^Q_order;
    N_bit = N_Frame * N_Symbol * N_RB * N_SC_perRB * Q_order;
    
    %% Noise Calculation
    SNR =  EbN0 + 10 * log10(Q_order);
    
    %% Loop
    for iloop = 1 :loopNumber
    data_bit_in = randi([0 1], 1, N_bit);
    dataSymbolsIn = bi2de(reshape(data_bit_in, Q_order, N_bit/Q_order).', 'left-msb'); 
    dataMod = qammod(dataSymbolsIn, Qm,'UnitAveragePower', true); 
    
    %% Show Constellation
    %scatterplotme(dataMod)
    
    %% Resource Mapping
    RE_Grid = zeros(N_RB * N_SC_perRB,N_Symbol * N_Frame);
    dataMod_tmp = reshape(dataMod,N_RB * N_SC_perRB,[]); %only data
    Power_Scale = 1;
    RE_Grid_all = Power_Scale * dataMod_tmp;
    
    %% IFFT add CP
    frame_mod_shift = ifftshift(RE_Grid_all); 
    ifft_data = ifft(frame_mod_shift,N_fft)*sqrt(N_fft); 
    %ifft_data = ifft(frame_mod_shift)*sqrt(1272); 
    Tx_cd = [ifft_data(N_fft-N_cp+1:end,:);ifft_data];
    time_signal = reshape(Tx_cd,[],1);
    
    %% Channel
    power_RE = sum(sum(abs(RE_Grid_all).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;
    power_tp = sum(sum(abs(ifft_data).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;  %IFFT zero padding averages the true RE Power
    N0 = power_RE .* 10.^(-SNR / 10);
    white_noise_starand = 1/sqrt(2)*(randn(size(time_signal)) + 1j * randn(size(time_signal)));
    TransmittedSignal = time_signal + sqrt(N0) * white_noise_starand;
    
    %% Receive and Sys
    ReceivedSignal = TransmittedSignal;
    
    %% FFT and Frame   
    frame_recieved_parallel = reshape(ReceivedSignal, N_fft + N_cp, []);
    frame_Received = frame_recieved_parallel(N_cp + 1:end,:);    
    frame_Grid_Received = fft(frame_Received,N_fft) / sqrt(N_fft);
    RE_Grid_all_Received = fftshift(frame_Grid_Received(1 : N_SC,:));
    
    %% Demodulation
    RE_PreDeMod = reshape(RE_Grid_all_Received,[],1);
    dataSymbolsOut = qamdemod(RE_PreDeMod, Qm,'UnitAveragePower', true); 
    data_bit_out = reshape((de2bi(dataSymbolsOut, 'left-msb')).',1,[]); 
    power_RE_receid = sum(sum(abs(RE_PreDeMod).^2)) / N_RB / N_SC_perRB / N_Symbol / N_Frame;
    snr_all(iQorder,iEbN0,iloop) = 10*log10(power_RE/(power_RE_receid - power_RE));
    %% Result: Ser and Ber
    %Ser
    sym_err = length(find(dataSymbolsOut - dataSymbolsIn));
    ser_all(iQorder,iEbN0,iloop) = sym_err / length(dataSymbolsOut);
    %Ber
    bit_error = sum(abs(data_bit_out - data_bit_in));
    ber_all(iQorder,iEbN0,iloop) = bit_error / length(data_bit_out);
    end
    sers = mean(ser_all,3);
    snrs = mean(snr_all,3);
    bers = mean(ber_all,3);
    sers_theory(iQorder,iEbN0) = QAM_SER_Theory(Qm,EbN0);
    
        fprintf('%dQAM\t%f\t %f\t %f\t %e\t\t%e\t\t%e\t\t%d\t\n', Qm, EbN0, SNR,snrs(iQorder,iEbN0),sers(iQorder,iEbN0),sers_theory(iQorder,iEbN0),bers(iQorder,iEbN0),loopNumber);
        end
    end
    
    figure(1)
    semilogy(EbN0_list, bers(1,:), 'k--+');
    hold on 
    grid on
    semilogy(EbN0_list, bers(2,:), 'r--o');
    semilogy(EbN0_list, bers(3,:), 'b--x');
    semilogy(EbN0_list, bers(4,:), 'g--s');
    xlabel('Eb/N0,dB');
    ylabel('BER');
    title('BER VERS SNR');
    legend('QPSK','16QAM','256QAM','1024QAM');
    
    
    figure(2)
    semilogy(EbN0_list, sers(1,:), 'k--+');
    hold on 
    grid on
    semilogy(EbN0_list, sers_theory(1,:), 'k-');
    semilogy(EbN0_list, sers(2,:), 'r--o');
    semilogy(EbN0_list, sers_theory(2,:), 'r-');
    semilogy(EbN0_list, sers(3,:), 'b--x');
    semilogy(EbN0_list, sers_theory(3,:), 'b-');
    semilogy(EbN0_list, sers(4,:), 'g--s');
    semilogy(EbN0_list, sers_theory(4,:), 'g-');
    xlabel('Eb/N0,dB');
    ylabel('SER');
    title('SER VERS SNR');
    %SML =  simulation, THR = theory
    legend('QPSK-SML','QPSK-THR','16QAM-SML','16QAM-THR','256QAM-SML','256QAM-THR','1024QAM-SML','1024QAM-THR');

    计算理论误码率的函数:

    function SER = QAM_SER_Theory(Qm,EbN0)
       %Reference https://dsplog.com/2012/01/01/symbol-error-rate-16qam-64qam-256qam/
       Q_order = log2(Qm);
       EsN0_DB =  EbN0 + 10 * log10(Q_order);
       EsN0 = 10.^( EsN0_DB/ 10);
       k = sqrt(3 / (2*(Qm - 1)));
       k_snr = k * sqrt(EsN0);
       cer = erfc(k_snr);
       SER = 2*(1 - 1/sqrt(Qm))*cer - (1 - 2/sqrt(Qm) + 1/Qm) * (cer.^2);
    %    cer = erfc(sqrt(EsN0/2));
    %    SER = cer - 1/4*cer.^2;
    end
    

    计算理论误比特率的函数需要参考文献,不过观察误码率与误比特率曲线,大体趋势相同,也许仅相差一个和调制阶数相关的常数(后来验证并非如此简单)。

  2. 仿真结果

    1:SER VERS SNR(该图理论(THR)误符号率曲线和实际仿真(SML)理论误符号率曲线基本重合)

    2:BER VERS SNR(未画出理论误码率曲线)

  3. 分析结论

    本仿真中应该重点关注信噪比的换算,包括Eb/N0(每bit的信噪比)到Es/N0(每QAM符号的信噪比),频域通过IFFT到时域前后计算SNR,特别是子载波个数与IFFT的点数不相同时,如何在时域加噪声,每个时域采样点的噪声功率N0应该加多大。

  4. 反思

    1.仅白噪声下的仿真结果,那么在多径信道下的仿真曲线如何呢?如何利用
    信道均衡
    来对抗多径带来的频率选择性衰落。
    2.在调制阶数越来越高的情况下,误码率与误比特率都随之升高,那么通信中是如何通过调制阶数的升高来提升系统的吞吐量的呢?
    信道编码
    的作用。
    3.如何利用多个天线MIMO技术来提高通信系统的有效性与可靠性?
    信道预编码与均衡

标签: none

添加新评论